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The electromagnetic field in a linear, nonmagnetic, nonabsorbing uniaxial crystal which fills the entire half-
space z > 0 and whose optic axis is perpendicular to the plane z = 0 is represented as an angular spectrum of
plane waves. The angular spectrum representation consists of a superposition of plane electromagnetic waves
expressed as the sum of two integrals. In general both homogeneous and evanescent plane waves are required
in each integral. Each plane wave of the spectrum satisfies the identical equations obeyed by the entire field.
The homogeneous plane waves of the first integral are all ordinary waves and those of the second integral all

extraordinary waves. The spectral amplitudes of the field are explicitly expressed in terms of the Fourier
transform of the field in the place z = 0. The method of stationary phase is applied to the integral represen-
tation and it is thereby shown that in the far zone the field may be expressed as the sum of an outgoing (non-
uniform) spherical wave and an outgoing (nonuniform) ellipsoidal wave. The amplitude of these waves, at each
point on the wave surface, is expressed in terms of the Fourier transform of the field in the plane z = 0.

1. INTRODUCTION

It has been known for some time that it is possible,
under rather general conditions, to represent a mono-
chromatic electromagnetic field in an empty half-
space,z =0 say,as an angular spectrum of plane
waves.1—3 The angular spectrum representation of
such fields consists in general of a superposition of
homogeneous plane waves which propagate in all
directions into the half-space and a superposition of
evanescent waves which propagate in directions
parallel to the xy plane and decay exponentially in
the positive z direction. Each plane wave component
of the spectrum, whether homogeneous or evanescent,
satisfies the same set of equations which are obeyed
by the entire field; in this sense the angular spectrum
representation is a true mode expansion of the field.

Since the early 1950's this representation has been
successfully employed, with increasing frequency
(sometimes in a restricted form), in the solution of

a great variety of physical problems such as diffrac-

dielectric, it is easily seen that the angular spectrum
representation is identical with that for the vacuum
case except for the change of wave number from
w/c for the vacuum case nw/c for the dielectric
case where w is the frequency, ¢ is the vacuum velo-
city of the radiation, and » is the index of refraction
at frequency w. If, however, the dielectric has the
properties mentioned above except that it is noniso-
tropic, the situation is quite different, and this prob-
lem has up to now received little attention in the
literature.14

In this paper and the next we shall extend the angular
spectrum representation to cover fields in anisotro-

pic media. Paper I will be devoted to uniaxial crys-

tals and Paper II mostly to biaxial crystals.

2. DERIVATION OF THE ANGULAR SPECTRUM
REPRESENTATION

Monochromatic electric and magnetic fields

tion theory,4 the theory of optical instruments, 5,6 E(r,t) = E,(r) exp(— iwt) (1a)
radio propagation,? antenna theory, ;9 holo- and ’ 0
graphy,10—12 and many other topics.13 H(r,?) = Hy(r) exp(— iwt) (1b)

The usefulness of the angular spectrum representa-
tion of electromagnetic fields in vacuo suggests that
it may be desirable to investigate the existence of a
similar representation of fields inside material
media. Such a representation would be helpful in the
treatment of various problems involving the inter-

in a (macroscopically) homogeneous, linear, nonmag-

netic, nonabsorbing anisotropic source-free dielectric
filling a volume V obey Maxwell's equations which in
the Gaussian system of units have the form15;

action of electromagnetic radiation and bulk matter. curl Hy(r) + Gw/c) € *Ey(r) = 0, (2a)
If the half-space z = 0 contains for example a homo-
geneous isotropic, linear, nonabsorbing, nonmagnetic curl E,(r) — (Gw/c)Hy(r) = 0, (2b)
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divie+E,(r)] =0 (2¢)

div Hy(r) = 0, (2d)
inside the volume V. We have made use of the rela-
tionship

D0=€'E0 (3)

between the electrical displacement D, and the elec-
tric vector E, where € is the (real) dielectric tensor
of the medium. Upon substituting Eq. (2b) into Eq.
(2a), we see that E,(r) satisfies the equation

curl curl Ey{r) — k2e- E,(r) = 0, 4)
where
B =uw/c. (5)

If we choose as our coordinate axes the principal
dielectric axes of the medium, the vector € « E takes
the form (e,E, ,€,E, ,€3E,,). We now make the
assumptions that

€, =€y * €5 (6)

and that the volume V is the entire half-space z = 0.
Thus we are restricting our attention to a semiinfinite
uniaxial crystal whose optic axis is perpendicular to
the face of the crystal.

We shall confine our attention in what follows mostly
to the electric field; the magnetic field is obtained in
a straightforward manner by the use of Eq. (2b). Let
us now write the electric field E{x,y,2) as a two-
dimensional Fourier integral with respect to the first
two variables, i.e.,

Eolx,y,2) = ff 8(a, Byz) explik(ax + By)tdadB, (7)

and, since E, satisfies Eq. (4) we may show, using Eq.
(7) and the Fourier inversion formula, that the three
components of the vector function §(a, 8;z) satisfy
the following differential equations:

928
k2(a2 + B2)8, — x
( ) a2
+ ika(’ é, >_ k2¢.8 =10, (8a)
9z 1% g
928,
. ) . 26,
+ ikBlikad, + ikBE, + —)| —k2¢,8,=0, (8b)
02
2(q 2 2)g 928,
k2(a2 + p2)§, — v
98
+ i(ikaé’, +1 z)—— k2e,6, = 0. (8¢)
0z z
In a similar manner Eq. (2¢) implies that
8,
ikae &, + ikBelé’y + €4 =0. (9)

02

Using Eq. (9) and rearranging terms, we may rewrite
Eqs. (82)-(8c) as
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028, €3\ 08
— B2(a2 + B2 _ _ _ 3 z
Py (a B €1)6, —ika (1 )9z = 0,
10a)
928, €5\ 068 (
— k2(x2 2 _ _ -3 z
Py B2(a2 + 8 )é’ sz( )5 = 0,
and (10b)
6282 &
—— k2(e;— a2 — B2)§,. (10c)
022 €5

We shall proceed to solve the set of coupled differen-
tial equations (10a)~-(10c) as follows: We may solve
Eq. (10c) immediately since it involves only one un-
known &,, and, having substituted the solution for §,
into Eqgs. (10a) and (10b), we will then solve these
equations to obtain a solution for §, and é’y, respec-
tively.

The general solution of Eq. (10c) is

8,(a,B;2) = e} (a,B) expliky;2)

+ e; (o, B) exp(—iky,z), (11)

where
vy =[€4 — (€1/€5)(02 + B2)|1/2 if €;2a2 + 2,
(12a)
=+ i[(e,/€3) (@2 + B2) — €,]1/2 if €5 < a2 + B2,
(12b)

and e} and e are arbitrary functions of a and .16
The exponentials on the right-hand side of Eq. (11)

are oscillatory or growing and decaying, depending
on whether o2 + g2 is less than or greater than €.

Upon inserting Eq. (11) into Egs. (10a) and (1 b) w
obtain the following equations for &, and & 3

028, 2042 2
Py —k2{a? + B2 — €)8, — ika|l <
X exp(iky;z) — ikyz€, exp(—iky;2)] =0 (13a)
and
028, 2(y2 2
P — k2(a2 + g2 — €,)8,
€
—ikB <1 - €—3> [ikyet explikys2)
1
—ikyge, exp(—iky;z)]=0. (13b)

These equations are solved in Appendix A; the solu-
tions are shown to be

8,(@,8;2)= e} (@, B) expliky,2) + €5 (o, BT expl— iky,2)
€3 ay s ;
_ 6_1 <a2—+[32> et (a, B) expliky;z)

v E—3‘(0120[:?32) e; (@, B) exp(— iky32)

€4 (14a)
and
8,(@, B;2) = €% (@, B) expliky12) + €; (@, B) exp(— iky,2)
€3 673 + ;
_ ;; <m>ez (o, B) expliky,2)
€3 Bvs - ;
e L L )

(14b)
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where

yi=(,—a2—-p2)1/2 if €, =02+ 2, (15a)

=+i(@2 +p2—€)/2 if ¢; < a2+ 2. (15b)

y3 is defined by Egs. (12a) and (12b) and e}, e, e},
and e are arbitrary functions of a and 8.

If we substitute Eqgs. (11), (14a), and (14b) into Eq. (7),
we see that we have succeeded in representing the
electric field E, as a superposition of the following
four types of plane waves:

) (ei(a,p),et(a,B),0) explik(ax + By + v,2)] =E,

(i) (ez(a,B),e5(@,B),0) explik(ax + By —y,2)] = E,,

. €3 ays €5 By3
i) |— 2 —"3 \ _S(_13 ) 1] et
. { 61<a2 ¥ BZ>’ 61<az + 32)’ } ere.f)

X exp[ik(ax + By + y32)] = Eg,
and

. €3/ Y3 €3( Brs _
o o) e e

X exp[ik(ax + By — y32)] = E,.

It may be verified that each of the waves E,,E,,E,,
E, is a solution to the original equation (4) and it
may thus be regarded as a mode of the electric field
in the half-space z = 0.

We have thus far not imposed any boundary conditions
on the field and we shall address ourselves to the
problem now. Physical considerations demand

(i) The field should remain bounded at infinity in the
right half-space;

(ii) since there are no free sources anywhere in the
right half-space, we would expect that in the right
half-space all energy would be radiated away
from the plane z = 0.

The first condition implies that

e;(a,B) =ej;(a,B) =0 for a2+ 2> €, (16a)
and

e;(@,8) =0 for a2+ B2 >e,. (16b)
Considerable care must be exercised in the applica-
tion of the “radiation condition” [condition (ii) above]
to propagation in crystalline media since, as is well
known, the directions of the ray vector (Poynting vec-
tor) will not in general coincide with the direction of
the wave normal in such media. It will be necessary
for us to examine the Poynting vector associated with
each type of homogeneous plane wavel? E,ji=12,
3,4, and to accept as physical solutions only those
waves whose ray vectors point away from the plane
z = 0 into the half-space z = 0.

The time averaged Poynting vector may be defined as
(8) = (c/81) Re(B, X H}). (1

For each of the waves E,,j = 1,2, 3,4, we may calcu-
late the magnetic field using Eq. (2b) and the ray vec-

tor using Eq. (17). It is found that in the case of the
waves E, and E,, the ray vector is in fact in the
direction of the wave normal and thus we reject solu-
tions of the type B, since these would imply energy
propagating in the medium towards the plane z = 0.
Waves of the type E; and E, are known as ovdinary
waves whereas those of type E; and E, are called
extraordinary waves;these concepts will be discussed
in more detail shortly. For the extraordinary waves
E; and E 4, the directions of the ray vector and the
wave normal do not in general coincide. However, if
we calculate the z component at the Poynting vector
for E,, we find that

(8,) = v5(€d/ey) let(a,p)|2/(a2 + B2), (18a)
while for E, we {ind that
(8.)=—7r3(e%/ey) lez(@,B)12/(a? + 62). (18v)

Thus since the right-hand side of (18a) is positive
and the right-hand side of (18b) is negative, we see
that all plane waves with wave normals pointing away
from the plane z = 0 have ray vectors which also
point away from the plane z = 0, while all waves with
wave normals pointing towards the z = 0 have ray
vectors also pointing towards that plane. It should be
emphasized that this result holds only because the
plane z = 0 is the plane perpendicular to the optic
axis of the crystal; one would not expect it to hold for
an arbitrary plane.

On the basis of the preceding arguments we reject
solutions of the type E,. We may then using Eqs. (7),
(11), (14a), and (14b) and conditions (i) and (ii) write
the electric field E, as a superposition of plane wave
of the type E, and E; as follows:

Eolx,y,2) = [[ e©(a,p)
x exp[ik(ax + By + y,2)]dadp
+ [f ete® (a,B)

x explik(ax + By + v,2)]dadp, (19)

where
e(or) (a: B) = (ex(a, B),ey(a) B), 0), (203.)
ee®(a, B) 6
=e,(a,p)|- Tay_s €3 ,— _Prs 3,
+B2) €y a? + B2 ey
(20b)

(the + superscripts on e}, e}, e} have been dropped),
and v, and ¥, are defined in Eqgs. (15) and (12), res-
pectively. In Eqs. (19), (20a), and (20b) ¢,, e,,and e,
are arbitrary functions of the parameters o and B.

In the mode expansion (19), real values of ¥, and y4
are associated with homogeneous plane waves with
the direction cosines of the wave normals being pro-
portional to (o, 8,v;) and (a, B, y4), respectively.
Imaginary values of y; and 75 are both associated
with evanescent waves which run up and down the xy
plane and decay exponentially with increasing z. We
may say, by analogy with the accepted terminology
for electromagnetic fields in vacuo, that Eq. (19) rep-
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resents the electric field as an angular spectrum of
plane waves.

In order that the representation (19) have more than
formal significance, the spectral amplitudes e©r) and
e(ex),or equivalently the functions e,,e,,and e,
should be expressible in a simple manner In fact
these functions may be expressed in terms of the
boundary value of the field E, in the plane z = 0 by
setting z = 0 in Eq. (19) and taking the Fourier in-
verse. The resulting expressions are

.0 = (L) [Tt

X exp|—
e w,p=(L) £, 3,0
X exp[— ik(ax + By)]dxdy

ay3 €3
+< 2 4+ Bz> el<2n> -fo'.[EOZ %2,0

x exp[— ik{ax + By)]dxdy,

ik(ax + By)ldxdy, (21a)

(21b)

ey(a78) :<%>ZJiEOy(x1y)0)
x exp{— ik(ax + By)} dxdy

By s €s (R 2 DCE
+ A x,y,0
<a2+62> €, <2n> fo 0: %3, 0)

x exp[— ik(ax + By)]dxdy. (21c)
Thus Eq. (19) together with Egs. (20) and (21) repre-
sents the electric field everywhere in the half-space
2 20 in terms of its boundary value on the plane
z2=0.

An expression for the magnetic field H, may be de-
rived from Eq. (19) using Eq. (2b), the result is

Ho(x,y,z) = ff [sl X e(or) (a,B)]
x exp{ik(ax + By + v 2)]dadp
+ f[ls5 x e (a,p)]
x exp[ik(ax + By + y32)]dadp, (22)
where
8, = (a’rﬁy '}/1) (22'3)
and
83 = (a,8,73) (22'p)

3. DISCUSSION OF THE ORDINARY AND EXTRA-
ORDINARY WAVES OF THE ANGULAR SPEC-
TRUM

It was shown in Sec. 2 of this paper that the electric
and magnetic fields in a uniaxial crystal may be rep-
resented as a superposition of both homogeneous and
evanescent plane waves of two different types. In this
section we shall briefly examine the properties of
these two types of plane waves.

Let us consider first a typical plane wave component
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in the first integral on the right-hand side of Eq. (19);
it is of the form

ECD(c,y,2) = (e, (@,B),e,(a,B),0)
X exp[ik(ax + By + vq2)].  (23)
Equation (2¢) implies that
divE®r) (x y z) = 0; (24)

thus homogeneous plane waves of this type are trans-
verse. It may be verified that the field E (°T) satis-
fies the reduced wave equation

(V2 + k2e ) E©D) (x y,2) = 0, (25)
since by Eq. (15)

a2 + B2 + 92 = ¢,k2. (26)
Thus we see that the phase velocity of the wave E ©©x)
° vy = c/el/z @7
irrespective of its direction of propagation. This re-

sult implies that the first integral on the right-hand
side of Eq. (19) is a superposition of ordinary waves.18

A typical component of the second integral in Eq. (19)
has the form

EeX)(x, y,2z) = ¢ (a,p)

e \a2 +82) e, \a2+p2)
X explik(ax + By + v52)]. (28)

A wave of this type is not transverse since Eq. (2¢)
implies that
div E(e® =ike (a,8)[1 — (e5/€,)]v; = 0. (29)

E(e® gatisfies the reduced wave equation

(V2 + k2¢(a, B)|Ee® (x,y,2) = 0, (30)
where
€la,B) =€ + (1 - €;/e5)(@2 + B2), (31)

The phase velocity of E ©x)

v, = c/€(a,B)1/2 (32)

depends, through a and 3, on its direction of propaga-
tion. The last integral in Eq. (19) is then a superposi-
tion of extraordinary waves.18

It may easily be verified that E{or) and E(e® gatisfy
all the other well-known properties of ordinary and
extraordinary waves, we shall not, however, carry
this discussion any further here.

Since the magnetic field is related to the electric
field by the Maxwell equation (2b), it is easily shown
that the partial (E, H) fields, consisting of each of the
two types of E waves discussed in this section and
their corresponding H waves, have the true structure
of plane electromagnetic waves.
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4. ASYMPTOTIC BEHAVIOR OF THE ANGULAR
SPECTRUM

In this section we shall investigate the asymptotic
behavior of the field as 2R — « along any line speci-
fied by fixed direction cosines x/R,y/R,z/R,z > 0.
For the homogeneous ordinary wave contribution to
the electric field,i.e.,

= [/ 2, 5c, €@, B)
x explik(ax + By + v,2)} dadg, (33)

EG ¢,y,2

the integral is essentially of the form whose asymp-
totic behavior was considered by Miyamoto and
Wolf.1? Using their results we may immediately
write the asymptotic behavior of the electric field as

2mie}/2 [z gor 61/2 1/2y
k R R T R

« explike 1/2 R)

EOY (r,9,2)~ —

- (34)

Similarly for the magnetic field
2niel/? /2 y
G )= = TR ) sox eor(ete el

k R
explikel/2 R}
X o—_——_.— -
R

(35)

3

where
SO=€%/2 (x/R,y/R,z/R). (36)

The homogeneous extraordinary wave contribution to
the electric field

E((E)X)(x,y,z) = jjq2+82\<£3 e(QX)(ay B)

X explik(ax + By + y,2)ldadp  (37)
cannot however be cast in the form of Miyamoto and
Wolf's integral. The asymptotic approximation to an

integral of the type appearing in Eq. (37) is derived
in Appendix B where it is shown that

— 2miel’2 [z ,
ESP@,y,2) ~ ——— <E>e(e")(a ,8")

kE2
N exp[zke%/z gR]’ (38)
R
where
o' = (e}/2/t)(x/R), (39)
B = (e}/?/€)(y/R), (40)
and

i

Similarly for the magnetic field

2miel/2 (2
(ex) .,
H — s X eX (g
*) rE? <R> (@', 8")

exp[ikel/2 ¢R
9 [ Rs 3 ], 42)

where

8, = [Ol’,B',[Gl - (61/63)(‘1,2 + 3'2)]1/2]' (43)

The surfaces of constant phase of the fields Eii')() and
HY} at a great distance from the origin are seen to be

ke Rt = const, (44)
which may be rewritten as
2 2 2
X7 ¥ 27 _ const. (45)
€1 €1 €3
Thus the surface of constant phase is an ellipsoid
which has the same orientation and the same ratio

between the length of its principal axes as the ellip-
soid of wave normals (Ref, 15,p. 673) of the crystal.

Since the evanescent portion of the field is an integ-
ral with an exponentially decaying integrand, it may
be shown that under reasonable assumptions, we may
neglect the contribution of the evanescent waves to
the field in the far zone. The asymptotic approxima-
tions, as kR —> «© along any line specified by the field
direction cosines [x/R,y/R,z2/R, (z > 0)], to the elec-
tric and magnetic fields are therefore

2niel/2 [z x y
E,(x,y,2)~ — L e©n(el/2 Z el/2
ot % <R> YR
exp(ikei/zR)
p, G S
R
2mie}/? (2 ike L/2tR
7 eX(a,B)ﬂ[_i__l (46)
ke2 \R R
and
2miel/2 [z y
H,(x,y,2)~ — 1 a;><e°1‘el/2 ez Z
o9, 2) k (R) ° < Y R
be1/2 i c1/2
Xplike } R]_z"“; <z_>sexe(ex)(0£'n3')
R kE2  \R
exp[ikel/2 R
, Explikey® ER] R3 tR] ")

We see that the over-all far zone structure of the
field is that of the sum of an outgoing (nonuniform)
spherical wave, associated with the ordinary waves
of the spectrum and an outgoing (nonuniform) ellip-
soidal wave associated with the extraordinary waves
of the spectrum. In the neighborhood of any point in
the far zone, the structure of the field is that of the
sum of an ordinary and an extraordinary plane elec-
tromagnetic wave.

5. CONCLUSION

We have shown that the electromagnetic field in a
uniaxial erystal, which is linear, nonmagnetic, and
nonabsorbing and which occupies the entire half-
space z = 0,and which furthermore has its optic axis
perpendicular to the plane z = 0, may be represented
as an angular spectrum of plane waves provided only
that the field have an invertible Fourier integral rep-
resentation in the plane z = 0 [Eq. (17)] and that it
obeys the two physically reasonable boundary condi-
tions (i) and (ii). The angular spectrum representa-
tion of the electric field [Eq. (19)] or the magnetic

J. Math. Phys., Vol. 13, No. 4, April 1972
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field [Eq. (22)] consists of a superposition of plane
waves expressed as the sum of two integrals, each
integral containing in general, both homogeneous and
evanescent plane waves. The homogeneous waves in
the first integrand are ordinary waves and the homo-
geneous waves in the second integral are extraordi-
nary waves. Each plane wave (whether homogeneous
or evanescent) in each of the integrals obeys the
identical equations satisfied by the entire field; the
angular spectrum representation we have derived is
then a mode expansion of the field. We have further-
more explicitly expressed the spectral amplitudes of
the field in terms of the Fourier transform of the
field in the plane z = 0 [Egs. (21)].

In Sec. 3 we have applied the method of stationary
phase to the integrals in the representation and have
found that in the far zone, the field may be expressed
as the sum of an outgoing (nonuniform) spherical
wave and an outgoing (nonuniform) ellipsoidal wave.
The complex vector amplitude of these waves, at each
point on the wave surface, is expressed in terms of
the Fourier transform of the field in the plane z = 0.

The next paper in this series will be devoted to the
angular spectrum representation of the electromag-
netic field in a biaxial crystal, one of whose dielectric
axes is perpendicular to the face of the crystal. As a
special case of that analysis we shall derive results,
similar to those of this paper,for the case of a uni-
axial crystal whose optic axis is parallel to the face
of the crystal.
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APPENDIX A: SOLUTIONS OF THE DIFFERENTIAL
EQS. (13a) and (13b)

Equations (13a) and (13b) are both of the form

y"=— A2y + BeiCz + De-iCz, (A1)
where y” = d2y/dz2 and A,B,C, and D are constants.
If we make the substitution y = uei4z Eq. (Al) may
be rewritten as

u” + 2iAu’ = Bei(C-Az 1 Dg=i(CrA)z, (A2)
Upon setting 4" = we™244%, Eq. (A2) becomes
w' = Bei(C+A)z 4 De-i(C-A)z, (A3)

which may be solved to yield

w=—2L__ gicrae__L__ ic-mayp,
i(C+ A) i(C— A) (A4)
where E is a constant.
Thus
u = _B—_ ei(C-A)z __ _D__ e-i(C+A) + Ee-2 Az,
i(C + A4) i(C— A) (A5)

which gives on integration
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u=_—B  gic-mra_ __ D __

C2 _ A2 C2 _ A2

+ £ e~2iAz 4 F,
24

e—i(c +A)z

(A6)
where F is a constant.

Finally using the definition of # we obtain the solution
of Eq. (Al) as

y = —B- eiCz + __D_

A2 _ C2 A2 C2

iE

+ = g-iAz 4 FpiAz,
24

e iCz
(A7)

If we substitute into Eq. (A7) the specific values of
the constants A, B, C,and D that appear in Egs. (13a)
and (13b), we obtain the solutions for &, and 5y given
in Eqgs. (14a) and (14b).

APPENDIX B: THE ASYMPTOTIC BEHAVIOR OF
EP (r,y,2)

We derive here the asymptotic approximation for
large values of &R to the integral

Egi)X)(x’y,z) = ffaz+52<53 e(eX)(a, B)
X exp{ikRs+u}dadp, (B1)
where
d 8= {01,3, [51 - (61/63)(0‘2 + 52).11/2} (B2)
an
u=R/R. (B3)

The approximation may readily be found by the appli-
cation of the principle of stationary phase.19,20 On
applying this principle we find the asymptotic
approximation to (B1). We obtain

27ie

EGY(r,9,2) ~ Tl €08 ﬂg{ilfiu} .
(B4)
In Eq. (B4),
s ={a’,8,[€; — (€;/€3)(a’2 + p'2]1/2},  (B5)

where o’ and 8’ are the values of @ and 8 which
make the phase factor
® =au, +pu, + [e1 — (e1/€3) (@2 + B2)]1/2u, (B6)

stationary within the domain of integration,i.e.,a’
and 8’ are the roots of the equation

9% _3® _ (B7)
daa 3P
29 52 26\ 27
Pk i AL AL (B8)
da2 982 dadf
and
2 14
+1 when A> 0 (a—‘l’> >0,
da2
924\’
€ =(—1 when A> 0 —] <0, (B9)
282

i when A< 0.
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In (B8) and (B9) the prime denotes values at the
stationary points.

The roots of Eq. (B7) may be shown to be

' <¥7u (B10)
a =
{1 —[1— (e1/eg)]uz} 172
and s
g = €3ty . (B11)
{1~ [1— (e1/ep)]ut /2
Hence
geu = erl)./z{l—[l— (61/63)]u§}1/2- (B12)
Further calculation leads to the results
1—J1— (e,/€,) u2;2
L - ey/eguz) 513

2
61u.?.

and

€e=—1. (B14)

The asymptotic approximation to Eﬁ)") (x,y,2z) as
kR — w therefore is

— 2miel/2f z
(ex) ~ 1 (ex) (' R’
EGy ,9,2) ~ ——1-| —]e¥)(a’,8)
W e? (R)
" exp[ike}/2 (R)
R

(B15)

I

where @’ and B’ are given by (B10), (B14), and

: ] €1\ /2\? 1/2
Tl €3><R> .

(B16)
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The electromagnetic field in a linear, nonmagnetic nonabsorbing biaxial crystal which fills the entire half-
space z = 0 and which has one of its principal dielectric axes perpendicular to the plane z = 0 is represented
as an angular spectrum of plane waves. The angular spectrum representation consists of a superposition of
plane waves expressed as the sum of two integrals. Each integral contains in general both homogeneous and
evanescent plane waves. Each plane wave of the angular spectrum (whether homogeneous or evanescent) satis-
fies the identical equations which are obeyed by the entire field, The spectral amplitudes of the field are
explicitly expressed in terms of the Fourier transform of the field in the plane z = 0. The special case of a
uniaxial crystal whose optic axis is parallel to the plane z = 0 is treated in some detail. The far zone struc-
ture of the field in such a crystal is determined using the method of stationary phase. The field in the far zone
is expressed explicitly in terms of the Fourier transform of the field in the plane z = 0.

1. INTRODUCTION

In an earlier paper! (which we shall refer to as I), we
derived and discussed the angular spectrum represen-
tation of electromagnetic fields in the half-space

z 20, which is assumed to be entirely filled by a
linear, nonmagnetic, nonabsorbing uniaxial crystal
whose optic axis is perpendicular to the plane z = 0.

In the present paper we provide a generalization of
this work to cover the mathematically much more
difficult case of a biaxial crystal with any one of its
principle dielectric axes perpendicular to the plane
z = 0. The special case of a uniaxial crystal having
its optic axis pavallel to the plane z = 0 is discussed
in some detail in Sec. 3.
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1. INTRODUCTION

In an earlier paper! (which we shall refer to as I), we
derived and discussed the angular spectrum represen-
tation of electromagnetic fields in the half-space

z 20, which is assumed to be entirely filled by a
linear, nonmagnetic, nonabsorbing uniaxial crystal
whose optic axis is perpendicular to the plane z = 0.
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2. DERIVATION OF THE ANGULAR SPECTRUM
REPRESENTATION

Monochromatic electric and magnetic fields
E(r,t) = Ey(r) exp(— iwt)

and
H(r, !) = Hy(r) exp(— iwt),

(1a)
(1b)
in a (macroscopically) homogeneous, linear, nonmag-

netic, nonabsorbing anisotropic dielectric filling a
volume V obey Maxwell's equations in the form?2

curl Hy(r) + (iw/c)e *Ey(r) = 0, (2a)
curl Eo(r) — (iw/c)Hy(r) = 0, (2b)
div [e*Eo(r)] = 0, (2c)
div Ho(r) = 0, (2d)

inside the volume V. We have made use of the rela-
tionship

D, = €*E, (3)

between the electrical displacement D, and the elec-
tric vector E, where ¢ is the (real) dielectric tensor
of the medium. Upon substituting Eq. (2b) into Eq.
(2a), we see that E () satisfies the equation

curl curl Ey(r) — k2e*Ey(r) = 0, (4)
where
k=w/c. (5)

If we choose as our coordinate axes the principal
dielectric axes of the medium, the vector e*E, takes
the form (¢, E, , €,E,,, € 3E,.). If we now assume that
no two of the components €4, €,, and € are equal
and that the volume V is the entire half-space z > 0,
we are discussing a semi-infinite biaxial crystal one
of whose principal dielectric axes is perpendicular
to the face of the crystal.

Let us now represent the electric field E,(x,y,z) as a
two-dimensional Fourier integral with respect to the
first two variables, i.e.,

Eylx,y,2) = _fje(a, B; z) explik(ox + py)]dadB. (6)

If we make use of Eq. (6) and the Fourier inversion
formula, we may rewrite Eq.(2c) as follows

26
ika€15x+ik3€z‘gy+€3‘a—;=o- )]

Using Eq. (4), Eq.(6), the Fourier inversion formula,
and Eq.(7), we may derive the following set of coupled
differential equations for the three components of the
vector function §(a, B; 2);

9268,
P +A18x +Bzgy =0, (8)
926,

y —
e +A,86 +B,8 =0, (9)

and 228 B, 26 B, 08
i

P1A8, L _2D _g, (10)

9z2 kB 2z ka 0z
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where
Ay =k2 {61—[012(61/63) +{32]}’ {11a)
Ay =k2{e, —[a2 + (e,/€5) B2]}, (11b)
Az =Fk2[e; — (a2 +p2)], (11c)
B, =k2ap[1 — (e,/€3)], (114)
and
B, = k2a£[1 — (€,/€5)]. (11e)

Equations (8)-(10) are coupled in a more complicated
way than the corresponding equations for uniaxial
crystals[see I, Eqs.(10)] and their solution is not quite
so straightforward. The method of solution adopted
here is as follows: Eq. (8) is first solved for &, in
terms of &, the solution is substituted into Eq. (9)
and the resulting equations may be solved immedi-
ately since it depends only on §, . Once we have solved
for &, we may find 6, by straightforward substitution.
Upon substituting both these solutions into Eq.(10)

we may then solve the resulting equation for &,.

The first two steps in the above procedure are out-
lined in Appendix A where the following equation for
&, is derived:

a4<§’y 825y
o T Ay tAp) 2+ (4,4, —B,B)S, = 0. (12)

It is obvious from symmetry considerations that &,
also satisfies Eq. (12). Equation (12) is a fourth
order, linear differential equation with constant coef-
ficients and its solution is straightforward. Follow-
ing standard practice3 we factorize Eq.(12) as fol-
lows:

(_ai + k2~,§> (-Eﬁ + k2y2> § =0 (13)
022 922 yo

where

k2y2 = 3{A; + A, + [(A4; —A,)2 +4B,B,]1/2}. (14)

The + subscript on y, implies that on the right-hand
side of Eq. (14), one takes the positive sign and the
— subscript that the negative sign is taken. Equation
(13) may be factorized further as follows to yield

3y, . 3 . 3y . 9 B
(5; + lk’y.,)(gz-— 1k'>’+>($ + Zk’y__) (-a—z-— Zk‘y_) (gy =0.
(15)
The solution of Eq. (15) for 5, = y_ is?

8, = L{ expliky,z) + L exp(iky_z)

+ LY exp(— iky,z) + LY exp(— iky_z) (16)
and

8, = K exp(iky,z) + K§P exp(iky_z)

+ K exp(— iky,2) +K§) exp(—iky_z2), (17)

where L and K& are constants for each value of o

and 8. The form of §, may now be found in two differ-
ent ways. In the first place we may substitute Eqgs.
(16) and (17) into Eq.(10) and solve for &, following,
essentially, the argument used in Appendix A of I to
solve a different though similar equation. The result
is
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8,= MM exp(iky,z) + M) exp(iky_z)

+ M {7 expl— iky,z) + M exp(— iky_2)

+ P exp(iA}/2z) + Q exp(— iA}/2z), (18)

where M f),P, and @ are constants for each value of
o and B.

On the other hand we may substitute Eqs. (16) and
(17) into Eq. (7) and solve for §,. We then obtain

8, =M expliky,z) + M exp(iky_z)
+ M{") exp(— iky,.z) + Mé‘) exp(—iky_z) + R, (19)
where R is a constant depending possibly on ¢ and .

For these two equations to be consistent for
kyy = ky_ # A1/2 we require that

P=Q=R=0. (20)

The functions M{P, M, MO MS are given by

ae, KM + e, LM
Mf'):—( r1 271 ) (21a)
Y+€3
ae, K50 + Be , LED
M§P=— 14 214 , (21b)
v-€3
ae K& + Be LO
MP=—11 21 (21c)
Y+€3
ae K + Be, LY
MO =—12 272, (21d)

v-€3

We thus see, on using Eq. (6) and Egs. (16),(17), (19),
and (20), that the field is represented as a superposi-
tion of plane waves of the following four types:

E{M = KM, LM, M) explik(ax + py +v42)], (22a)

E{ = (KSP, L, M) explik(ax + py +y_2)], (22b)
EP = (KPP, LO, M) explik(ax + By —y42)], (22c)
E{) = (K, LY, M) explik(ax + By —y_2)].  (22d)

The fact that the K and L functions for each wave are
not independent of each other may be seen by substi-
tuting Eqgs. (16) and (17) into Eq.(8) [or Eq.(9)] and
comparing the coefficients of each exponential factor.
The following relationships may be shown to hold:

[Bo/(k2y2
[B,/(k2y2
The (+) notation stands for two equations, one with

the (+) superscript on both sides, the other with the
(—) superscript.

— AL

—A))]LM.

K{t) = (23a)

and

K = (23b)

We shall retain here the same conditions on the be-
havior of the field we demanded in I, namely:

(i) The field is bounded at infinity in the right
half-space.

(ii) In the right half-space no energy is carried
towards the plane z = 0, i.e., the Poynting vec-
tors for the allowed waves of types (22a)~(22d)
are directed away from the plane z = 0.

The algebra involved in the application of these two
conditions to the field is quite lengthy. This is [in
the case of condition (ii)] a reflection of the extre-
mely complicated relationship between the direc-
tions of the wave normals and the ray vectors for
biaxial crystals.5 The detailed analysis is carried
out in Appendix B. Here we will only give the re-
sults.

The discussion in Appendix B, taken together with Eqgs.
(6), (16), (17), (19)—(21), implies that the electric field
E, may be represented as
€K, +8 ele\

Y+€3 /

0 ("
E()(x;yyz) = _g(K]_, Lla — N4+ <
X explik(ax + By + 4y, 2)]dadp
et (e
=0 v-€3
X explik(ax + By + n_y_z)]dadp, (24)

where the K and L are related by

K, =[By/(k2y2 —A})|L, (25a)
and
K, = [B,y/(k2y2 — A,)]L,. (25b)
Further,
+ 1 if the point (a, 8) is in D (a, £)
ne =<or D& (a, B) (26a)
— 1 if the point (o, B) is in D,(,?'(a, 8)
and
+ 1 if the point (a, ) is in DS (a, B)
- =<or Dg_) (a,B) (26b)

— 1 if the point (a, B) is in D5 (e, B)
The three domains D,(,l) ,D,(:z), and D(+), which are de-
fined in Appendix B are mutualh( excluswe and cover
the entire domain of @ and 8. and th are asso-
ciated with homogeneous waves whose wave normals
are in the direction whose direction cosines are pro-
portional to (@, B, n4+v4+) and \Xhose ray vectors point
into the right half-space. D, is associated with
evanescent waves which run up and down the plane
2 = 0 and decay exponentially with increasing z.
Smgﬂar remarks may be made about D,(ll),Dgz, and
with 7_5_ taking the place of n,y,.

Equatlon (24) is the required angular spectrum vep-
rvesentation fov the electric field in a biaxial crystal,
which has one of its principal dielectric axes perpen-
dicular to the face of the crystal. The angular spec-
trum representation for the magnetic field may be
obtained from Egs. (24) and (2b).

For Eq.(24) to be a useful representation of the field,
it remains only to relate the functions K and L to the
boundary value of the field in the plane z = 0. This
may be accomplished by setting z = 0 in Eq. (24) and
taking the Fourier inverse. We thereby obtain

J. Math. Phys., Vol. 13, No. 4, April 1972
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Kﬁmm+Kﬂmm=G%zﬁfmmmm

x exp[—ik(ax + py)jdxdy (27a)
and w
L+ (@,0) + Lo, A= (2 [T Eo,5,9,0

X exp[—ik(ax + By)]dxdy. (27b)

We may solve explicitly for K, and K, by using Eqs.
(25a), (25b), (27a), and (27b). The results are

) k2y2 — A B
£, =[50 - (22 g0, 50] 2

2 k2(y2 —y2)’
(28a)
d
an g . (kzyg —A) P _ } B,
K, = _y(a,ﬁ; 0) — _B_z‘—") ‘(a, B; 0) Im
(28b)
Simila_rly B
— . 2 . 1
L= _é’x(a, 8; 0) “(ﬁy_g_—A) gy(a;B; 0):| m
(28¢)
and B B
_ . 2 ; 1
L = 8605 0~( ) e 350
(28d)
where
é(a, B; 0) =<2—I:,)2Lon(x,y,O)
x exp[—ik(ax + fy)]dxdy. (29)

Thus we have succeeded in representing the electric
and magnetic fields everywhere in the right half-
space in terms of their boundary values in the plane
z = 0. Analysis similar to that carried out in Sec.3
of I, results in the conclusion that for biaxial crys-
tals all the plane waves of the spectrum are extra-
ordinary waves, whose phase velocity depends on
their direction of propagation. There are in general
two phase velocities associated with each direction
of propagation, one velocity is connected with a plane
wave component of the first integral in Eq. (24), the
other with a component of the second integral. There
are, however, two specific directions, the optic axes
of the crystal for which these two velocities are
equal. The directions of the optic axes are given by
the vectors s which satisfy the following equation;

8 = (a, ﬁ,'}’+) = (a,) Bly'}’—)y (30)

i.e., we wish to find the values of @ and §8 for which

Y+ = Y- (31)
or using Eq. (14),
(A —A,)2 +4B.B, = 0. (32)

The solution of this equation for the specific case
when €5 > €, > €, gives the following two values for

s’
€, — € € — €
i[( 2 1)63}1/2, 0, I:( 3 z)ﬁ] 1/2%’
€3 — €, €3 — €,
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(33)

8, =

i.e., the optic axes lie in the xz-plane and are sym-
metrically situated about the 2 axis. The angle f
which the axes make with the z axis is given by

€, — €4\ €571/2
tanf =+ —2 1173 .
€3~ €2/€,

This is essentially the result quoted in Ref. 2, p. 682,

(34)

3. SOME FURTHER DISCUSSIONS OF UNIAXIAL
CRYSTALS

In I we derived an angular spectrum representation
for the field in a uniaxial crystal whose optic axis is
perpendicular to the xy-plane. If we set ¢; = €, in
the formulae derived in this paper for biaxial crys-
tals, we recover the results of I as one would expect.
However, we may do something further—if we set

€, = €4 in the formulae of the preceding section, we
would expect to obtain the angular spectrum repre-
sentation for the field in a uniaxial crystal occupy-
ing the half-space z =0, where now the optic axis
lies in the xy -plane.

For ¢, = €3, Eq.(14) reduces to

v} =€; — (@2 +82) [E43] (35)
and

y2 =€; —[a? +(e,/€1)B2]  [=92], (36)
An examination of the functions f(a, B) and g(e, B)
(seg Appendix B), shows that for all points in
D{Na, B),

f(e,)>0 and g(a,B)>0; (37)

thus DS (a, B) and Dy, (a, B) are null sets; this re-
sult implies that the Poynting vector of a plane wave
whose wave vector points into the right half-space
also points into the right half-space, when the plane
z = 0 contains the optic axis. We have therefore for
this case,

n,=1, alla and§gB. (38)
Equation (24) may now be shown to reduce to
&7 a
Eo(x,y,z) = fle((I, B) (1’ 0’ —76)
X exp[ik(ax + By + yg2)]dadp
+ /JK —1 "
_.{6[ 2(a9ﬁ) (17 Otﬁ ,a)
X explik(ax + By + y,z)]dadg, (39)
where
vo =[€; — (a2 + 82)]1/2  for €, > a2 + p2
=+ a2 +p2 —¢€,]1/2 fore, <a2+p2 (40)
and va
€ 2 2
= — o2 + 232 az B2
Ye [62 <a +€16)] forlz€2+€1
€ 1/2 2 2
= 3 2 _2. 2 __ _q_ _B._
+z(a +€13 52> for1<€2 +€1. (41)
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Furthermore,
- (%8 _";)2 e
Ky = =(E )50 " Eoen. 0
x exp|— tk(ax + By)]dxdy  (42)
and

Ky(a,p) = (—2%)2 EEOx(x,y, 0) exp[— tk(ax + fy)]dxdy

+<__ag_)<i>2 ﬁEoy(x,y,O)

€4 — B2/\2m,
x exp[— ik(ax + py)|dxdy. (43)
The representation for the magnetic field may be
found in a straightforward manner using Eq.(2b), It
is easily shown that the first integral in Eq. (39) is a
superposition of ordinary waves and the second inte-
gral a superposition of extraordinary waves.

The far zone behavior of the field may be found by a
stationary phase calculation similar to that performed
in I. The result for the electric field is

2miel/2 (2 x y
Eox,y,2) ~ — —5 (R-)eor<€%/2§,e{/2_§)

ikel/2 icl/2
y exp(ike}/2R) B 2mie} <z_) cex(a’, B)
R k2 \R
o SxRlike}/2ER ] (44)
R ’
where
— €1\fy\ 212
- [- -2 49
2(x /R
a’ = 6_5_%/__2, (46a)
and R
, QbR (46b)
6&/2{
Furthermore, we have defined
e(r) ((1 ’ B) = Kl(Ol ’ B)(ly 0’ - a/'}’o) (473)
and
e(ex)(a’ B) = Kz(a’ B) (17 - (E]_ - BZ)/QB, '}’e/a)- (47b)

Thus in the far zone, the field behaves as the super-
position of an outgoing (nonuniform) spherical wave
and an outgoing wave whose surfaces of constant
phase are given by the equation

x2/¢; +y2/€, + 22/€; = const. (48)
Equation (48) is the equation of an ellipsoid related to
the ellipsoid of wave normals.2

4. CONCLUSION

We have shown that the electromagnetic field in a
biaxial crystal, which is linear, nonmagnetic and non-
absorbing, and which occupies the entire half-space

z 2 0, and which furthermore has any one of its three
principal dielectrics axes perpendicular to the plane
z = 0, may be represented as an angular spectrum of
plane waves, provided only that the field have an in~
vertible Fourier integral representation in the plane
z = 0 [Eq.(6)] and that it obeys the two physically
reasonable boundary conditions (i) and (ii). The

angular spectrum representation of the electric field
[Eq. (24)] consists of a superposition of plane waves
expressed as the sum of two integrals, each integral
containing in general both homogeneous and evanes-
cent plane waves. Each plane wave (whether homo-
geneous or evanescent) in each of the integrals obeys
the identical equations satisfied by the entire field;
the angular spectrum representation we have derived
is thus a mode expansion of the field. We have
furthermore explicitly expressed the spectral ampli-
tudes of the field in terms of the Fourier transform
of the field in the boundary plane z = 0 [Egs.(27) and
(28)].

In Sec. 3 we specialized the results already obtained
to consider the case of a uniaxial crystal whose optic
axis is parallel to the plane z = 0. Applying the
method of stationary plane to the integrals of the rep-
resentation we have shown that in the far zone the
structure of the field is that of the superposition of
an outgoing {nonuniform) spherical wave and an out-
going (nonuniform) ellipsoidal wave. The amplitudes
of these waves for each point on the wave surface is
given in terms of the Fourier transform of the field
in the plane z = 0.

In another paper® we shall make use of the angular
spectrum representation of the field in a biaxial crys-
tal derived in this paper to treat the problem of inter-
nal conical refraction.
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APPENDIX A: DERIVATION OF EQ. (12)
We wish to solve the equations

928
“+ A8, +By6 =0,

222 (A1)

928
—2+ 4,8 +B,§, =0,

0z2 (42)

for 6, and ;. We first substitute the trial solution

AL/
8 =ue' ’ (A3)
into Eq. (Al) and obtain
;a2
u” + 214120 + B,8 7 *= 0, (Ad)
Now substitution of
0 14V
u’ =we2mlzz (AS)
into (A4) results in
; 4l
w' =—B,8e""7, (A6)
which may be integrated to give
2 iAl/zz'
w=—B [ §(z)e"™ Fdz' +C, (A7)

where C is a constant. Substituting from (A5) into
(A7), and integrating, we obtain
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z2 _9iall2, r# ial/2
u =_B2 f e iA) 2If gy(zn)el 1 dz"dz'

C -2iAl/2
- 2iA}/2
where D is a constant. We finally obtain, using (A3),

“+D, (A8)

AV2 , 2 —giail2,, p2f ;A2
8, =—Bae 7 [T PN [T g (2 x oM ¥ ggugy
iC Y, iAl/zz
+ = _ e-iA/%z 4 1
ZA%/Z 1 De . (A9)

If we now subsltitute Eq.(A9) into Eq. (A2), divide

through by e'*" 2, differentiate each term with res-
~osal/2

pect to z, divide through by e 2*4" * and again differ-

entiate each term with respect to z, we obtain alinear,

fourth order differential equation with constant coef-

ficient for &:

a4gy a28y
o T AL TAg) — 4 (4,4, — B1By)6, = 0. (AL0)

It is obvious from the symmetric way in which the
constants appear in (A10) that if we had started with
Eq.(A2) instead of (Al) and performed similar opera-
tions, we would have arrived at an equation for &,

that is identical to (A10).

APPENDIX B: IMPLICATIONS OF TWO PHYSICAL
RESTRICTIONS ON THE FIELD IN A BIAXIAL
CRYSTAL

This appendix is concerned with the implications for
the field in a biaxial crystal of the two conditions (i)
and (ii) described in the text

Let us consider first the expression for 'yi. Equation
(14) may be rewritten with the help of Eqgs. (11a),
(11b), (11d), and (11e) as

21 2(€1 2 (C2
r2=73leg t ;) —a E;J"l —B2(=+1

3
o) -2
+ 4a2p2 (1 _Z_:)(l _%)gl/z) .

We shall now divide the domain of ¢ and 8 into two
mutually exclusive domains D and D¢ (the (¥
superscript indicates that we are dealing simulta-
neously with the same considerations for the two
different functions y4 and y_). D ,(l*) (o, B) is the set

of points in the «B-plane for which the right-hand
side of Eq. (B1) is real and positive. D (¢, g) is that
subset of the a3-plane for which y _ is negative or
complex, [Complex values of y, miay occur when

(B1)

€; < €3 <€, or when e, < €5 < €, since in these
cases the right-hand side of Eq.(B1) may contain the
square root of a negative quantity for some subset of
p®(a, B)]. Points in D, ) are associated with homo-
e
geneous waves since y, is real. Points in Df,i) are
associated with waves which either grow or deca(y
exponentially with increasing z. For points in D ei)
we define y,_as that square root of +2 for which the
imaginary part of y, is positive. Thus condition (i),
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which requires that the field remains finite at infinity
in the right half-space, requjres that we reject solu-
tions of the form E{” and E{? [see Egs. (22)] for
points in Dgi) since these waves grow exponentially
with increasing z.

We now consider condition (ii) which demands that

for points in D ,(,i (i.e., for homogeneous waves) we
accept, of the four types of waves described in Egs.
(22), only those waves whose Poynting vector is direc-
ted away from the plane z = 0. The relationship be-
tween the directions of the wave normals and the ray
vectors is extremely complicated for biaxial crystals.

We need, however, consider only the z components of
the Poynting vector and we shall accept those solu-
tions for which this component is positive and reject
those for which it is negative. For a plane wave of
the form

E(x,y, z) = B, exp[ik(lx +my +nz)], (B2)

the z component of the time-averaged Poynting vector

{S) = (c/87)Re(E X H*) (B3)
may be written using Eq. (2b) as

(S,) = (c/8m)Re[l(E-E*) — EX(E*1)], (B4)
where

1= (lim’n)' (B5)
For waves of the form E{" [see Eq. (22a)],(S,) be-
comes after some calculation involving Eqgs. (21a),
(22a), and (23a),

(S,) = y+lc/8m) KD 2f(a, ), (B6)

where

22,2 A \2
fla, ) =1 +(—5 =)
2

N {o +[(k2y3 — A,)/By 18} {ae; + [(R2y3 ‘A1)/Bz]€23}_
vies (B7)

Similarly we may show that for waves of the form
Ef)[see Eq. (22¢)],

(S,) =~ y+lc/8m) |IKON? fla, B),

whfref(oz, B) is defined in Eq.(B7). We now divide
D) into the two mutually exclusive domains D ,(fl) and

D3, where DY) is that subset of D" for which f(a, B)
> 0 and D{? is that subset of Di” for which f(a, B)

< 0. Thus for points in D§? we accept solutions of
the form E{” and reject those of the form E{’, where-
as for points in D3 we accept solutions of the form
E{and reject those of the form E{. In a similar
mapner we may calculate (S, for the waves E{”and
E.’. For the wave E(2 ), we obtain

(B8)

(S,) = y_(c/8M K P 2g(a, B) (B9)
and for ES’
(S,) = —y_lc/8m) |k Pg(a, B), (B10)

where
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gla,By =1+ [(k2y2 —A,)/B,]?
+{a + [(k2y2—A,)/B,8Hoe, + [(kzyg—Al)/Bz]eZB}_
v2e, (B11)

We defined D7) as that subset of D}’ for which
(Ol, B) 20 and D(h; as that subset Of D for which

g(a, B) < 0. Obviously

pP =08 +0%) (B12)

For points m D¢ hl’ condition (ii) implies that we accept
solutions E ") and reject solutions Eg ), while for

points in D, we accept solutions ES? and reject those
of form E§".
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Refraction*
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An analytical, quantitative treatment of internal conical refraction is presented. The recently derived angular
spectrum representation of electromagnetic fields in biaxial crystals is employed. Explicit expressions for the
electric field in the far zone of a conically refracted beam of light are found by applying the principle of
stationary phase to the integrals of the representation. A close examination of the expressions for the field in
the far zone yields all the known results of internal conical refraction including the Poggendorf dark band. The
present treatment, however, goes beyond previous studies since, with our expressions, it is possible to investi-
gate the detailed structure of the conically refracted field.

1. INTRODUCTION

In his investigations into the propagation of light in
crystalline media on the basis of the theory of the
elastic ether, Fresnel derived an equation for the
wave surface (the locus at any instant t; of a dis-
turbance originated at some previous time #, at some
particular point 7’0) in a biaxial erystal.l This Fres-
nel wave surface is a two-sheeted surface of the
fourth degree, which reduces. for uniaxial crystals to
a sphere and an ellipsoid of revolution. Furthermore,
a geometrical construction was proposed, which con-
sisted of drawing appropriately positioned tangent
planes to the wave surface, and which led to the de-
termination of the velocities and planes of polariza-
tion of the refracted rays within the crystal. This
construction was Fresnel's successtul generaliza-
tion of a construction given more than a century
earlier by Huygens?2 for determining the directions
of the refracted rays in isotropic media and uni-
axial crystals,

In 1832 Sir William Rowan Hamilton discovered some
remarkable properties of the Fresnel wave surface
for biaxial crystals.3 In the first place he noticed that
the wave surface had four conoidal cusps at the points
where the optic axes intersect the wave surface.
Since to each of these points one may draw an infinite
number of tangent planes, Fresnel's construction im-
plies that an appropriately positioned cone of rays
external to the crystal would be refracted into a sin-
gle ray along the optic axis of the crystal. To this
phenomenon Hamilton gave the name external conical
rvefraclion. Further, Hamilton found that there are
four planes which are tangent to the wave surface at

an infinite number of points constituting a circle of
contact. The implications of the Fresnel construction
in this case are that an appropriately positioned ray
incident on the crystal would be refracted into a com-
plete cone of rays within the crystal. This phenome-
non was named internal conical vefraction. At Hamil-
ton's suggestion, Lloyd4 performed an experiment in
1833 and with the configuration required for internal
conical refraction observed a bright circle of light

on a screen placed behind the crystal, thus confirm-
ing Hamilton's prediction, The success of this experi-
ment contributed greatly to the general acceptance of
the Fresnel wave theory of light.

As the experiments demonstrating internal conical
refraction became more refined, 5-6 however, two
bright circles of light separated by a dark circle
were observed. These observations received no
adequate explanation until Voigt? in 1905, realizing
that any beam of light, no matter how well collimated,
consists of a superposition of plane waves whose wave
normals have a finite angular spread, calculated the
distribution of the rays associated with the wave nor-
mals which are slightly inclined to the optic axis. As
a result of these calculations he offered a more or
less satisfactory explanation of the observed light
pattern,

However, as has recently been pointed out,8 Voigt's
treatment is still largely qualitative in nature and
may be unsatisfactory for some purposes. In view of
the increased recent interest in the phenomenon,8-19
we consider it desirable to have a complete quantita-
tive analytical description of internal conical refrac-
tion using modern techniques. In this paper we pre-
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Since to each of these points one may draw an infinite
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ment contributed greatly to the general acceptance of
the Fresnel wave theory of light.
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bright circles of light separated by a dark circle
were observed. These observations received no
adequate explanation until Voigt? in 1905, realizing
that any beam of light, no matter how well collimated,
consists of a superposition of plane waves whose wave
normals have a finite angular spread, calculated the
distribution of the rays associated with the wave nor-
mals which are slightly inclined to the optic axis. As
a result of these calculations he offered a more or
less satisfactory explanation of the observed light
pattern,
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may be unsatisfactory for some purposes. In view of
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tive analytical description of internal conical refrac-
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sent such a description. The method used employs
the angular spectrum representation of electromag-
netic fields in biaxial crystals derived recently by
the author.11

2. DERIVATION OF INTERNAL CONICAL REFRAC -
TION FROM THE ANGULAR SPECTRUM REPRE-
SENTATION OF THE FIELD

Let us assume that the half-space z = 0 is entirely
filled with a linear, nonmagnetic nonabsorbing biaxial
crystal whose principal dielectric axes are in the
directions of the Cartesian coordinate axes. In this
coordinate system the dielectric tensor € is diagonallZ2

and has the three components ¢, , €, ,and ¢,. Let us
write
€xx =€, Eyy = €2, €22 = €3 (1)

and let us demand, for the sake of definiteness, that
€3> €57 €. (2)

Under these circumstances it may be shownll that
the directions of the optic axes are given by the vec-
tors

Sy = (i a()7 0’ 70)’ (3)
where
- €y — € 12 ’
o [(az” o
—_— '63 — 62 1/2 ’
Yo = |:<€3 - E1> 61] ) (30)

We shall restrict our attention to the optic axis given
by the + sign in Eq. (3).

In view of the physical impossibility of generating an
electromagnetic field in the form of a plane wave of
infinite extent, we shall define a well collimated beam
in vacuo as a field which may be expressed as an
angular spectrum of plane waves containing only
homogeneous plane wave components whose wave
normals make at most a very small angle with some
fixed direction in space.

It may be verified by standard procedures that a
plane electromagnetic wave incident on the crystal
propagating in the direction given by the unit vector
S,, where

SO = (a(); 0, (1 - 0(2))1/2), (4)

is refracted into a plane wave inside the crystal
whose wave normal lies along the optic axis s,.
Furthermore, it may be shown that an incident plane
wave inclined at a small angle to s, will be refracted
into two plane waves inside the crystal each of whose
wave normals make a small angle with the optic axis
8,. Thus a well collimated beam centered around the
direction s, incident on the crystal will be refracted
into an angular spectrum of plane waves within the
crystal, the wave normal of each component plane
wave making a small angle with the optic axis. It is
then reasonable to assume that the electric field in-
side the crystal will be given by an expression of the
form of Eq. (24) of Ref. 11, where the boundary values
&,(a, 8;0) and & (a, B;0) vanish for points o and 8
outside of some small two-dimensional domain D sur-
rounding the point (o, 0). Thus, changing slightly the
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notation of Ref. 11, we may represent the (monochro-
matic) electric field inside the crystal in the form

Eo(x,y, 2)
= {f Pey(a, p) exp {ikR<a§x + BRl A Iéﬂ dadp
+fD_fP(~)(“’ A) exp[ikR @% +BE tr 5)] dadg,
where

kR2y2 — A
Ps)a,B) = K (a, B) ,:1, —‘%2— )

<ael + Be, (k272 — Al)/Bz)] ©)

Y,€3 ’
Equation (6) stands for two equations, one with the
upper subscript on both sides of the equality sign and
the other with the lower subscript. In Eqgs. (6) the
symbols are defined as follows (see Ref, 11):

Koy @ 0)=| (2,80

_ (PR oA ___Bz_
< By >8 (e & 0)} R2[y2 —y2]’ @
where
8((1) B; 0) = <'2}%> 2 _ff EO(x;y; 0)

x exp[— ik(ax + pBy)|dadp, (8)

i.e., (a, B;0) is the Fourier transform of the bound-
ary value of the electric field in the plane z = 0;i.e.,

k2y2 = 3{A; + Ay £ [(A) — A,)2 + 4B B, J1/2} | (9)
where
Ay = k¥e; —[02(e /ey) + 2]}, (10)
A, = kz{e [a2 + (62/63)52]} (11)
By, = k2af1 — (e,/€3)], (12)
and
B, =R20B[1 — (e3/€3)). (13)

In Egs. (5)-(13), ¥ = w/c where w is the frequency
and c the vacumn velocity of the radiation,

The domains of integration D, are small domains in
the ap plane centered on the point (&, 0).13 The
boundary functions &, (e, 8;0) and & (o, §; 0) may be
found from a knowledge of the exacg structure of the
external light beam and the application of the boundary
conditions for Maxwell's equations. We shall not
make any further specific assumptions about the de-
tailed structure of external beam incident on the
crystal; we demand only that c‘a’x and & are continuous
and have a sufficient number of continuous deriva-
tives to ensure the validity of the following analysis.

We shall find it convenient to make the change of
variables
o — @y = p cosb,

14
8 = (p/G1/2) sing, (14)
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where

G = (e; — &)/ (€5 — €). (15)

Equation (5) then becomes

27 P,
Eo(x;y,z) = fo de fo P(+) (py 9)

X exp [z’kR ((ao + p cos6) 7

P ging £ + 9! 5)} d,
Gl/2 R 7+R pap

21 b .
+ fOTde fo P(,(p, 6) exp[sz <(a0 +p cose)%

+ (0/G1/2) sing % +y! Iz_{ﬂ pdp, (16)

where p is sufficiently large to cover the area D; but
at the same time

Pk 1. (1)

The primed functions are the unprimed functions
written in terms of the new variables defined by Eqgs.
(14).

We shall now proceed to calculate the approximate
value of the field in the far zone by the application of
the principle of stationary phase to the integrals in
Eq. (16). We shall then examine the structure of the
far field in sufficient detail to elucidate the essential
aspects of internal conical refraction.

The method of stationary phase makes it possible to
obtain the asymptotic approximation to integrals of
the type appearing in Eq, (16) as kR — « along a
direction specified by the fixed unit vectorl4

u=(x/R,y/R,z/R), 2z > 0. (18)

The result is

2rie k. ., exp(ikRt.- u)
Eo(x,y,z) ]Kl_;/;l_ PPl (o', 6 ) _—_—R—

+ 2nie_k p'P, (0, 8') exp(ikRt’ -u)

|aL/2] — (19)
where
ti =@y + p’' cose’,(p’/G'2) sing’, Yi'(P', 8"). (20)

Here p’ and 6’ are those values of p and 0 which
make the phase factors

&y = tyeu (21)

stationary within the domain of integration,i.e.,p’
and 6’ are the roots of the equations

ap 986 0. (22)
Furthermore
92%, 22¢ 2%
A, = [ + £ ;t:l 23)
ap2 962 2p98
and

9204\’
+1 when A, > 0, < i>>0
op?

32a,)\’
< ) <0 (24)
op2

=(—1 whena, >0,

€
— ¢ when o, <0,

where the prime in Egs. (23) and (24) denotes values
at the stationary points.

The algebra involved in the solution of Egs. (22) for
the stationary points is lengthy and cumbersome due
to the complicated form of y4 (p, 6). We give the de-
tailed derivation in the Appendix and limit our pre-
sent discussion to the general behavior of the solu-
tion.

After lengthy calculation, Eq. (22) yields the relations

u, = (1/7,)[Bay ¥ Eag cosé + pJds(0)]u,

and
uy, = (G1/2/y,)[F Ea, sing + pK+(6)u,

(25)

(26)

where the qualities J,(6) and K + (6) and the constants
B and E are defined in the Appendix.

In deriving the approximate equations (25) and (26)
we have neglected powers of p higher than the first
because of the constraint (17).

Equations (25) and (26) define the stationary points

p’ and 6’ for each direction of observation (u,, u,, u,);
however if these stationary points lie outside the do-

main of integration the leading term in the asymptotic
expansion of our integral will be of higher order than
1/R.

Thus Egs. (25) and (26) may also be viewed as defin-
ing those directions in space along which the electric
field in the far zone falls off as 1/R, by demanding
that the values of p and 8 in Eqgs. (25) and (26) are in
the domain of integration. In all other directions of
observation, the field in the far zone falls off faster
than 1/R, Our object is therefore to solve Eqgs. (22)
for u,,u,,and u, for each point (p, 6) in the domain
of integration.

Recalling the relation (17), we shall first consider
Egs. (25) and (26) in the zeroth-order approximation
where we neglect p entirely, These equations may
then be written as

u, = 1/%(B ¥ Ea, cosé)u,
and
u, = (1/y) [ (EF)}/2q, sind]u,.

(25%)
(26")

The constant F is defined in the Appendix, Upon
eliminating ¢ between Eqgs. (25a) and (26a) we find

that
Y B 2 Yo >2
——u) +{— = u2

which is the equation of a cone through the origin. We
also have the relation

u2 + uf +u2 =1, (28)
The cone defined by Eq. (27) and the sphere by Eq. (28)
intersect in a simple closed curve which we shall

call the critical curve and is designated by C,,.
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FIG, 1. Conical refraction in the zeroth-order approxima-
tion. The plane z = 0 is the face of the crystal. CO is the
direction of the incident beam. OA and OB are the lines in
which the cone |Eq. (27)] intersects the plane y = 0. OA is
also the optic axis. The directions of these lines are de-
fined by the vectors lying along them. The curve C is the
intersection of the cone and a screen (not shown) placed in
the path of the radiation,

We shall make a few general remarks about the cone

defined by Eq. (27).
(i) It has its apex in the origin.

(ii) Each plane z = const intersects it in an ellipse.

(1ii) It is symmetrical about the plane y = 0.

(iv) It intersects the plane y = 0 in two lines whose

directions are

11 = (0030’70)
and
1, =[(e1/€3) @g, 0,7,).

The direction 1, is seen to be the optic axis,

FIG. 2. Dlustration of the area occupied by
the endpoints of the vector u associated with
stationary points (p, 9) inside the domain of
integration. C, is the critical curve. C, and
C, are the outer limits of the accessible
area and are associated with the largest
values of p which remains within the domain
of integration. The dashed curves C; and C,
are the two curves associated with one fixed
value of p.
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(29)
(30)

(v) The aperature 8 of the cone in the plane y = 0 may
be calculated from Egs. (29) and (30). We obtain

tang = [(e3 — €3)(€ — €1)/(e5€)]1/2, (31)

Equation (31) is in agreement with the result quoted
in the literature.12 The conclusion is, therefore, that
a screen placed in the far zone of the field will be
illuminated only on a curve where the cone defined
by Eq. (27) intersects the screen. Thus all the gener-
a] features observed in Lloyd's experiment have been
verified. The results obtained so far are illustrated
in Fig.1.

In order to understand the fine structure of the radia-
tion pattern, it is necessary to examine the solution

to Egs. (22) in the first order approximation, i.e., we
must retain terms independent of p and those pro-
portional to the first power of p only. These solutions
are given as Egs. (25) and (26). We shall now consider
the solutions for u,,u,,and u, for a fixed p within the
range of integration. In this case it may be shown

that the critical curve is replaced by two curves C,
and C,. C, is inside C; and C, is outside C,. Fur-
thermore, the distance from a point on C, to a corres-
ponding point on the curves C, or C, is proportional
to p. Thus as we vary p throughout the domain of in-
tegration, we fill in an area whose thickness is pro-
portional to g and which is bisected by the curve C
(see Fig.2). Hence a screen placed in the far zone of
the field will be illuminated in an annular area and
dark elsewhere,

We shall now show that the intensity of the illumina-
tion throughout the annular area is by no means con-
stant, but varies in a manner compatible with the ex-
perimental observations. The relevant functions to
consider in this regard are the amplitude factors
p/1AaY/2] appearing in the expression (19) for the
electric field. It is shown in the Appendix that

p/1aY2] = pi/z M (6), (32)

to first order, where M.(6) in a bounded function of 6.
Thus we see the origin of the two bright rings separat-
ed by a dark ring observed in the experiments; for,
close to the critical curve,i.e., for very small p the
amplitude of the electric field goes to zero, whereas
as we move away from the critical curve towards C;
and C,, the amplitude grows proportionally to p1/2 (i.e.,
the intensity grows proportionally to p). We should
therefore expect to observe a dark band around the
critical curve, which is precisely what is observed.

We shall conclude our analysis of conical refraction
with a brief discussion of the polarization of the elec-
tric field in the far zone. If we consider the functions
Pi1)(p, 8) defined by Egs. (6) and (7) and we find, keep-
ing only the zeroth order term,i.e., neglecting p en-
tirely that

P.(p,06)
=~ 3|G1/28 (a, §;0) sing + & (a, B;0) (cosb + 1),
(1 — cosg) é,(a, B;0) + é,(a, ; 0) sing,

G1/2

a €
— 0gi2 L . ;
7y G & é,(a, B; 0) sing

0!0 € .
N 8. (a, B; 0)(cosh + 1)) (33)
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and
Z(p, 0)
~ 3 |—GY2§ (a, B; 0) sing + 5 (a, B; 0)(1 — cos®),
X (cosf + 1)8 (a, B;0) — 1/2 é.(a, 8; 0) sing,
x 20 G1/2 —18 (a, B; 0) sinp
7’0
(1
2= — 34
'Yo < é’ (a, B; 0) (cosb 1)), (34)

where a and g8 are related to p and 6 by Eq. (14). The
point in the far field for which Eq. (33) holds lies in
the directions given by the unit vector u which is a
solution of Egs. (25’) and (26') with the minus sign;
the point at which Eq. (34) holds is determined by the
solution of Eqs: (25’) and (26') with the plus sign,
Thus the orientation of the electric vector is deter-
mined at all points in the far zone by Egs. (25), (26),
and the boundary value of the field in the plane z =0.
Finally it is shown in the Appendix that

€4 = —1 (39)
(36)

3. DISCUSSION

We have considered a well collimated beam incident
in such a manner upon the face of a biaxial crystal
that the wave normals of the refracted waves associa-
ted with each plane wave component of the incident
beam make at most a small angle with one of the
optic axes of the crystal. The field inside the crystal
was represented as an angular spectrum of plane
waves. By applying the principle of stationary phase
to the integrals of the representation, we have found
explicit expressions for the electric field in the far
zone. A close examination of the radiation pattern

in the far zone [see Egs. (19), (32)-(36)] yields all

the known results connected with internal conical
refraction. We believe that this is the first totally
analytical and quantitative analysis of internal conical
refraction and that the explicit expressions derived
in this paper go beyond the largely qualitative treat-
ments given previously,

APPENDIX: CALCULATIONS RELATING TO THE
DERIVATION OF THE ASYMPTOTIC APPROXIMA-
TION TO THE INTEGRALS IN EQ. (16)

The phase factors &, may be written explicitly in the
form

Qi = ou, +Buy

+[A— Ba2 — Cp2 + (D + Ea2 — Fp2]2
+ 4EFa2p2)l/2]L/2y, (A1)
where
= (g, +€,)/2, (A2a)
= (€, + €,)/2¢;, (A2Db)
= (e, +€3)/2, (A2¢)
= (€, — €,)/2, (A2d)
= (e; — €,)/2¢,, (A2e)
F=(¢5 — €,)/2€,. (A2f)

With the change of variables

a — ay = p cosf, (A3a)
B = (p/G)1/2 sing,

where

G = (€3 —_ 62)/(63 - €1), (A3b)

the phase factors become

&, = agu, +p cosbu, + (p/G1/2) sinfu,
+vol1 — (p/¥3)(Bay cos F Eay)
— (p2/2y$)(Ba, cosf ¥ Eay)?
— (B/2y3) cos?gp? — (C/2Gy3) sin?6p?

+ (E/2¢3)p? cosd + 0(03)]u,, (A4)

where O(p3) means terms involving the third and
higher powers of p.

We need the first and second order derivatives of &,
with respect to p and §. We have

0%
= = cos6
a—— = Cos ux

+ [sin(e)/Gl/Z]uy + [— 1 (Ba, cosé ¥ Eay)
[¢]
— (B/7,)p cos28

— (C/GYyyp sin28 £ (E/yy)p cos8 + O(p2)ju,,

— p/v3 (Bay, cos§ ¥ Ea)?

(A5)
and
2¢
—a-p; = F,(6)u,, (A6)
where

Fy(6) = —1/v,[(1/¥3)(Ba, cosé ¥ Ea)? + B cos2f

+ (C/G) sin20 = E cosf + O(p)]. (A7)

It should be noted that F,(0) does not vanish for any
value of 6 and in fact

F4(0) <0, (A8)
We also find that
o0d, )
5p = psinfu, + (p/G1/2)cosbu, + [(p/y,)Ba,, sing
p? .
+ = Ba, sind (Ba, cosf ¥ Ea,)
¥2
0
+ (B/y,) cos6 sinfp? — (C/Gyo) sing cosfp?
F (E/2y,)p? sing + O(p3)]u,, (A9)
928,
= 20y — 1/2) gin2
o2 p cos20u, — (p/G1/2) sin2¢
+[p/vo Bag cos6 + O(p2)]u, (A10)
and
92& _ .
= — sinfu,
opab
cosf Ba,
+ iz %y + <70— sing + O(p)> u (A11)
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The stationary points of the integrals are defined by
those values of p and ¢ which satisfy the equations

22y _00s _

o0 98
Using Egs. (A5) and (A9), Eq. (A12) becomes, on re-
taining only first-order terms in p,

(A12)

cosbu, +[sin(6)/GY/2Ju, =~ (1/v,)[(Ba, cosd F Ea,)
+ {p/v3)(Bay, cosé ¥ Ea,)? + Bp cos?6

+ (C/G)p sin?6 F Ep cosflu,
and
— sinfu, + (coss/Gl/Z)uy =~ - (1/v,) Ba,, sing

+ [ p Ba, sin(6)/v§](Ba, cosé ¥ Ea,) + B cos§
x sinfp — (C/G) sing cosfp * 3 E2p sindlu,. (A14)

(A13)

Eliminating «, from (A13) and «, from (A14), these
equations become

u, = (G1/2/y)[¥ Eq, sing + pK, (6)]u, (A15)
and
u, = (l/yo)([BaO F Ea, cosf) + in(e))uz, (A16)

where

B202 E202
J:(8) = ( S B) cosé
Y8 v8
BEo?2
- <E/2 + 0) (1 + cos26) (A15")
78
and o o
Ki{0) = si 9[((: + z ao) F (E +BEag>cosa]
= sin — — .
* ! G 73 2 Y3

Using Eqgs. (A10) and (A13) we find
82‘13{! ' EO[O
Rt I u, + O(p2
[892 Yo P (P ):

where the prime indicates that the derivative is
evaluated at the stationary point. Using Egs. (A11)
and (Al14) we obtain

(A17)

a%i} ’
[..-apa 2| = o(o. (A18)
It follows that
A = 32¢, 029, [a%ﬂzs'
* ap2 062 2p0
Eoeo
7y Fy(@)pu2 + O(p?), (A19)
and hence
1/|A}/2] o [My(0)/u,]p~2/2 (A20)
where
My(8) = lyo/Ea F(6)]1/2, (A21)
Since Fy(9) < 0, we have
Ay <0 (A22a)
and
H. >0, (A22b)
Thus according to Eq. (24),
€, =—1 (A23a)
and
e =—1 (A23Db)
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The states associated with the group-subgroup R, 2 G, are unambiguously representable as the stretched pro-

duct states of just seven elementary multiplets. This result is used to derive a number of branching rules for
the decomposition R; = G, in a simpler manner than hitherto available. An example of the decomposition of

the spin representations of R, is given.

I. INTRODUCTION

Faced with the problem of labeling the orbital states
of the atomic f-shell, Racah! found it useful to consi-
der the chain of groups

R;2 G52 Rg,

where Cartan's exceptional group G, occurs as a sub-
group of the seven-dimensional rotation group. By
using the irreducible representations of R, and G, as
auxiliary labels, Racah was able to uniquely label all
the atomic states of the f-shell apart from a few
duplications associated with the reduction to R5 of the
(31) and (40) representations of G,.

Later, Flowers2 applied the same chain of groups to
the labeling of the orbital states of the nuclear f-
shell. In this case representations of R, arise which,
upon restriction to G4, give rise to duplicated G,
representations. Furthermore, when the representa-
tions of G, are restricted to R, representations of R4
with multiplicities of ten or more are common.3

Recently Sharp and Lam4-5 have discussed the inter-
nal-labeling problem using the stretched products of
elementary multiplets. For each group—subgroup
combination they considered, they found that a finite
number of elementary multiplets sufficed and the
solution to the internal labeling was complete. To
date no proof that a finite set will always suffice has
been given, though it is clear that a finite number will
certainly solve the problem up to irreducible repre-
sentations of a preassigned degree.

In this paper we establish a finite set of elementary
multiplets, for the case of R; 2 G,. This set has been
used to give a number of branching rules in a simpler
form than previously available.6-7 While we have
established that the finite set suffices to generate all
known tables of R; 2 G, branching and to generally
cover a wide range of special cases, a general proof
of the completeness of our set has eluded us. Brief
consideration is given to the internal labeling problem
for the cases of Ry, 2 G, and G, 2@ R5. For general
definitions we follow the paper of Sharp.>

O. ELEMENTARY MULTIPLETS FOR R, O G,

The elementary multiplets required to describe the
G, content of R, representations were initially deter-
mined by forming stretched states from the basic
representations of R, and G, and then inspecting
tables of branching rules for unaccounted G, repre-
sentations. The set of elementary multiplets was then
enlarged until all G, representations were accounted
for. The final set of elementary multiplets was esta-
blished as

(33 21000), [23:](10), [100](10), [110](10), [110](11),
(2:2]aD), [210)11). (1)

455

Stretched states associated with a given R, represen-
tation [A;A513] and a G, representation (uiu;) may be
formed from the product of the elementary multiplets
given in Eq. (1):

{134 11000k {[3  £](10)}° {[100](10)}°{[110](10)} <
x{[110]1)}e {8 $3)an}/ {[210]a), (@)

where necessarily

M=tat+ibtetdtetif+2g,
ANy=3a+ib+d+e+iftg, 3)

Xy =34+ 3b+ 35S,
and
uy=b+c+d+e+f+g and uy=e+f +g.4
In applying Eq. (2) certain states become over repre-
sented. These redundant states are excluded by the
introduction of the subsidiary condition

fd =0. (5)

We note that had we confined our attention to only the
true representations of R;, we would have required the
the stretched product states

{[100](10)}* {[110](10)}* {[110](11)}*{[111](00)}
x {[111](10)}° {[111](20)} {[210](11)}¥ {[211]11)}*
x {[211]@D{[311]22)f 6)

with the restrictions

e,h,i=0o0r1l
and hb =hc=he=hi=ei=¢ej=bi=0j=0. (1)

Equation (2) taken together with Eqgs. (3)-(5) generate
the known G, content of all the representations of R,
with 6 = Ay = A, > X3 = 0. The results of the next
section would suggest that the above results cover all
representations of R, and G,, but the complete proof
has eluded us and would obviously involve a rather
complex combinatorial treatment.

III. BRANCHING RULES FOR R, -* G,

The general branching rule for making the decompo-~
sition R, = G, has been given by Judd® and Stone.”
However, a casual inspection of the tables of branch-
ings3 suggests that for most representations the de-
compositions can be expressed more simply. Indeed,
via elementary properties of the partition of inte-
gers,8:9 it is very easy to establish from Eq. (2) the
following R, — G, branching rules:

[x00] = (»,0), (8)
A
(o] - Z_)O O, @), C)
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TABLE 1. Decomposition of the Spin Representations under R, G,.

Dy [aagagl (wguy)
8 [t:%] (00) + (10)
48 [311] (10) + (11) + (20)
112 [234] (10) + (11) + (20) + (21)
112 [$3§] (00) + (10) + (20) + (30)
168 [3313] (20) + (21) + (30)
512 [333) (11) + (20) + 2(21) + (22) + (30) + (31)
560 [54%] (10) + (11) + (21) + (30) + (31) + (40)
720 (333] (20) + (21) + (22) + (30) + (31) + (32)
1008 [333) (10) + (11) + (20) + (21) + (30) + (31) + (40) + (41)
672 [2%3) (00) + (10) + (20) + (30) + (40) + (50)
448  [733] (30) + (31) + (40)
1512 [£%3] (21) + (22) + (30) + 2(31) + (32) + (40) + (41)
1728 [33%)] (20) + (21) + (22) + (30) + (31) + (32) + (40) + (41)
+ (50)
2800 [%33] (21) + (22) + (30) + 2(31) + 2(32) + (33) + (40)
+ (41) + (42)
4096 [133] (11) + (20) + 2(21) + (22) + (30) + 2(31) + (32)
+ (40) + 2(41) + (42) + (50) + (51)
3024 [Z233] (10) + (11) + (20) + (21) + (30) + (31) + (40) + (41)
+ (50) + (51) + (60)
3080 [Z13] (30) + (31) + (32) + (33) + (40) + (41) + (42) + (43)
4928 [119) (20) + (21) + (22) + (30) + (31) + (32) + (40) + (41)
+ (42) + (50) + (51) + (52)
4752 [Z22]  (10) + (11) + (20) + (21) + (30) + (31) + (40) + (41)
+ (50) + (51) + (60) + (61)
1320 [3%3) (00) + (10) + (20) + (30) + (40) + (50) + (60) + (70)
2
D] = 2 (p,0), (10)
o=
0] - 25 2 (—a,B), (11)
a=0 f=-a
(here both summations are to the lesser of X’ and
A— A7)
2N =N
[a] - 25 W= +a,p), (12)
o=0 8=0
23
A= 20 20 Z+ v —a,0—B) {13)

=0 B=0

Q

(here the summation over § is to the lesser of A — X’
and ).

The above results may be checked by the computation
of the dimension of the R, representations in terms of
those of the sum of G, representations given in the
decomposition. The above rules exhaust the possibili-
ties for all R, representations other than those involv-
ing partitions into three distinct nonzero parts. The
above rules were used to construct the branching
rules for the spin representations of R, given in
Table I. The branching rules given for partitions into
three distinct parts were constructed using Eq. (2), as
indeed was the entire table prior to the discovery of
the above rules.

Duplications of G, representations can only arise in
those representations of R, involving partitions into
three distinct nonzero parts. Table I and tables pub-
lished elsewhere3 show a number of striking features.
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For example, in the R, representations [x + 1,1,

A — 1] no G, representation ever occurs more than
twice and then only if it is of the form (p, 1) with
2x —1 = p = 2. Using Eq. (2), we can show that the
appropriate branching rule is

2Xx-3
A+1,,0—1]- (11) + bZ%) [ +2,0)+20 +2,1)

+ (b +2,2)] +(22,0) + (2r,1), (14)
where necessarily b = 0. This rule is a special case
of the more general rule

2(\-x) x-1
D+, ux—%x]- 2 (@ +x,8+1)
a=0 B=0

2(A-x)

+ Z; (a+1+x’6)
a=0 g=0

2(>\-J\r)-1
+ ZG (@ +x+1,x+1)
o=

(15)

This latter rule shows that these representations of
R4 can never yield G, representations with multiplici-
ties in excess of two. More complex branching rules
can be derived but with greater combinatorial com-
plexity. For these cases the general results of Juddé
and Stone7 are relevant.

IV. OTHER GROUP-SUBGROUP COMBINATIONS

Our success in representing the states associated with
the R, 2 G, group—subgroup combination might en-
courage the belief that other combinations involving
G, could equally well be considered. Juddl? has re-
cently given some branching rules for the Ry, - G,
combination. In particular, he finds that the (30) and
(31) representations of G, occur twice in the decom-
position of the (1111100) representation of R, ,. How-
ever, there is no way of representing this elementary
representation of R,, in terms of the stretched pro-
duct of Ry 4 = G, states, and hence the internal label-
ing problem is insoluble in terms of elementary
multiplets.

The group-subgroup combination G, 2 Ry is well
known with the representations (31) and (40) contain-
ing twice repeated R, representations. We find that 40
G, 2 R, states are required to write the states aris-
ing in the (31) and (41) representations of G, as
stretched product states. It is simple to see that the
multiplet (81)S can not be expressed in terms of sim-
pler multiplets, and hence the number of elementary
multiplets required to solve the internal labeling pro-
blem for G, > R5; must be very large if indeed it is
finite.

V. CONCLUSION

The states associated with the group—subgroup com-
bination R, 2 G, have been expressed as the stretched
product states of just seven elementary multiplets
with one restriction. The other group-subgroup com-
binations involving G,, apart from that of G, 2 SU,
treated by Sharp and Lam,4 do not seem to be readily
amenable to our approach. The branching rules given
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yield an added insight into the multiplicity and inter-
nal labeling problems. The use of stretched product
states in atomic and nuclear calculation could well

lead to substantial simplifications since it is general-~
ly easiest to compute isoscalar factors for fully
stretched states, !
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By translating the eigenvalue problem of a difference equation to one of abstract operators, we give a method
of finding relations among the eigenvalues of the difference equations.

Let us consider an operator B on any normed space

having discrete eigenvalues Ay, A5, A5, -+ with cor-
responding eigenfunctions ¢, ¢,, ¢35, -+ . Suppose
that there is an operator U such that

BU = UF(B) (1)

and with the additional property that the ¢;,i = 1,
2,...,do not belong to the null space of U. The func-

tion F suffices for our application to be a polynomial.

From the above equation (1) we obtain
B(Ug,) = Fx;)(Ug;) (2)

Equation (2) means that if x; is an eigenvalue of the
operator B,then F(x;) is also an eigenvalue. By con-
tinuing in this way we conclude that if we know one
eigenvalue X ;, we can find a sequence of eigenvalues
F(\;), F(F(A;)) - - - . This sequence can be finite or
infinite.
In the case

Urg, =0, n=1, (3)

the eigenvalue A; would generate an infinite sequence
of eigenvalues.

In the case

Urg; =0 4)
for some n,the eigenvalue A, would generate a finite
sequence of eigenvalues.

A sufficient condition, which we shall use later, in
order that (3) be valid is that the point spectrum of
the operator U be the empty set.

In many problems of physics we encounter the eigen-
value problem of a difference equation of the form

N
Zi Jfoo + k) + al) fin) = Eftn) (5)
1=

in the space of square-summable sequences. For

simplicity we consider the 2,,i = 1,...,N,to be
positive integers.

The above equation can be considered the realization
of the eigenvalue problem of the operator!,2

N
T=2 Vk+A, (6)
i=1
where V is the unilateral shift operator 6n a sepa-
rable Hilbert space H, over the complex field C, with
an orthonormal basis {e,°, e.g., Ve, = ¢,., and A is
a diagonal operator defined as Ae, = afn)e,. The
form (6) is very convenient for studying relations
among the eigenvalues. As an elementary application
we shall prove the following theorem.

Theorem: X A is such that Ae, = n + D where
b and D are arbitrary constants, then for each eigen-
value A ; of T there is an infinite sequence of eigen-
values {\; + mb} X ,. In particular,if b = 2VN, the
eigenvalues of T form an infinite sequence and
Aap=A; +b.

Proof: Let V be the above-mentioned unilateral
shift operator. Then it follows directly that

TV = V(T + b) (7)

The spectrum of3 V is the closed unit disk in the com-~
plex plane and is purely continuous except for the
points z:|z| < 1 which belong to the residual spec-
trum. The point spectrum of V is the empty set. This
means that for each eigenfunction ¢; of T

Veg, =0, n=1. (8)
Relations (7) and (8) imply that to each eigenvalue A;
of T there belongs an infinite sequence of eigenvalues

D+ mb};f:l and the first part of the theorem is
proved.

For the second part we write the operator T in the
form T = T, + A where T = 23/, V*i. We may
assume b >[D| without loss of generality, since addi-
tion of a constant does not change the nature of the
spectrum. The obvious relations bn + D> 0 2.5
(brn + D)2 < o imply that the operator A~1 exists
and is a positive definite Hilbert-Schmidt operator.
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yield an added insight into the multiplicity and inter-
nal labeling problems. The use of stretched product
states in atomic and nuclear calculation could well

lead to substantial simplifications since it is general-~
ly easiest to compute isoscalar factors for fully
stretched states, !
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Furthermore, since || T [ = VN and b = 2VN the
circles

CkE{)\I ,)\’—M}eISHTO”}’ k=1,2,---, (9)

are mutually disjoint. Here p, are the eigenvalues of
Aye.g,u,=bk+D.
We are now able to use the following theorem#4:

I T, is a bounded operator and A a self-adjoint one
with A1 a positive-definite Hilbert—Schmidt opera-

tor,then T = T, + A has a discrete spectrum. If the
norm || Tl is such that the circles defined by the re-
lation (9) are mutually disjoint, then the eigenvalues
of T are contained in the circles C, with one eigen-
value to each circle. (u, are the eigenvalues of A.)

The application of this theorem and the previous re-
sult (that to each eigenvalue A; of T there belong an
infinite sequence {7\ + mb} -1 of eigenvalues) implies
the relation 2;,; = A; + b, and the proof of the
theorem is complete.

1 P.Deliyannis and E. Ifantis, J. Math. Phys. 10, 421 (1969).
2 P, Tsilimigras, Z. Angew. Math. Mech. 50, 317 (1970).

3 P.Halmos, A Hilber! Space Problem Book (Van Nostrand, Prince~
ton,N.J., 1967), p. 230.
4 J.Osborn, J. Math.& Phys. 45, 391 (1966).
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Departmenl of Physics, Universily of Missouri, St. Louis, Missouri 63121
(Received 15 September 1971; Revised Manuscript Received 21 November 1971

A previously established set of conditions for the existence of solutions of a nonlinear system, expressing the
unitarity of » X n symmetric matrices, is proven by means of the homotopy invariance theorem.

In a previous paper! we considered the system of
equations
2a;; sing;; Z) Ay, CO8(Dy, — Dyp),

’] =1927""n’ (1)

which expresses the unitarity condition for n X n
symmetric matrices

U=1+iT )
with "
T, =a,e'’, a;>0, : (3)

and we established inductively a condition for the
moduli ¢ which guarantees the existence of at least
one solution set ¢ of the system (1). The purpose of
the present note is to provide a proof of that condi-
tion, valid for arbitrary ».

As in Paper 1, we start by splitting the system (1)
into two subsystems. The first involves only the
phases of diagonal elements,

2, sing,, =25 a3, i=12,...,m, (4)
k
and obviously requires that
Za” = E ai%’ = 11 2) 1, (5)
k

or, that
, 1/2 , 1/2
1-—(1—2 a,%) sa“51+<1— ai2k> ,
P k
i=1,2,...,n, (6)

where the prime indicates the absence of the term
with & = 4.
The second subsystem reads
2a;; sing;; = ? ;0 COS(P;, — D),
i>i=1,2...,n (7)
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and can be rewritten as

F(0)= Aty — By — (1 + 12)1/2 .? %G

x cos(d,, — &) =0, j>i=1,2,...,n (8)
where
t;; = tang,;, (9)
A;; = 4,2 — a sing;; — a; sing;;), (10)
B;; = ala,; cosd; + ay; COS¢,-,-), (11)

and the double prime indicates the absence from sum
of the terms with 2 =i and & =3j.

We will assume now that conditions (5) or (6) hold,
and will also impose the restriction

0<¢ =<in (12)

so that the phases of the diagonal elements are uni-
quely determined from (4). When these are substi-
tuted into (10) and (11), the problem reduces to finding
out under what additional conditions on the moduli a
the system (8) has a solution in the 3n(n — 1) — dimen-
sional positive cube

= igoj{(pijlo = ¢, = z7h (13)

A direct inspection of the system (8) readily shows
that the system (8) cannot have a solution in C unless
Ay > 0. This inequality imposes on g;; upper bounds
wh1ch are more restrictive than those indicated in
(6), and we will assume that they hold because we

are here only interested in the solutions in C. In
particular, this means that sin¢;; = 1 only when g;;
assume their minimum values given in (6). Of course,
if these more restrictive upper bounds on g;; do not
hold, the system (8) may still have a solution in a
domain larger than C, as indicated by the numerical
example given in L.
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PROOF OF AN EXISTENCE CONDITION

Let us now construct the homotopy

F(t;2):C X [0,1] C Rr(»~1)/2+1 > Rr(n-D)/2 | (14)
where
F,‘j(t; A) = Aij()\)tij _B,'j(x) -1+ tij2)1/2
x Zg"aikajk cosA(dy, — Die),
j>i=1,2,.. (15)

and A, (A) B, ](A) are those functions of A which are
obtamed from (10) and (11), respectively, when the
moduli a,(k = 7, j) are replaced by Aa,, + (1 — A)a,,
where a,, are lower ends of the ranges for a,, as
given in (6).

Clearly,
A1) =A
B,(1)=B
A,0) = 6,; = ay(2 — 4, —7;,) = A, (16)
B,0) = 0.

[The last equation follows from the fact that B, (0) is
the expression (11) in which all U are replaced by
their minimum values, indicated in (6). For these
values, as it can be seen from (4), sing;; = 1 and
cosg;; = 0.]

The system
F(;1)=0 (17)
coincides with the system (8). On the other hand, the
system
F(t0) =@t — (1 +t2)1/22 4%, = 0,
]>2 =1,2,...,n (18)
has one, and only one solution in C:
I;(1 —T3)1/2 (19)
if, and only if
I‘,-;-E@,-;lk"a,-ka,-k< 1, j>i=1,2,...,n (20)

Let us show now that if (20) holds, deg(F(; 2), C, 0) is
constant for A € [0,1]. To this end, according to the
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homotopy invariance theorem,2 we only have to check
that the system

F{t;n) =0 (21)
has no solutions on the boundary C of C for all
A € [0,1]. But on the side3 ¢,; = 0 of C,

—F;(60) = B;(\) + ?" G, 85, COSA(yy, — ;). (22)

In this expression both the term B, J(A) and the sum
are nonnegative. For 1 = x> 0, B;,(A) is strictly
positive, while for » =0, B; (0) = 0, but the sum is
strictly positive; the expressmn (22) as a whole may
not vanish for any x e [0, 1].

On the side ¢,; = in,

Jm Pt a) = — B, + [4,0) — 2" a,a;
ij
X cosA(¢;, quk)] 11_1;;.1<> N PX))

For 1 = A > 0, this expression may not vanish be-
cause, even if the coefficient of the infinite limit
vanished, B, (7\) is strictly positive. Again for x = 0,

B;;(0) = 0, but for this value of A the coefficient of
the limit is strictly positive as a consequence of
conditions (20).

We conclude that the system F(f; A) = 0 has no solu-
tion on the boundary of C for any A € [0, 1]. By the
homotopy invariance theorem the topological degree
is then constant, and since for A = 0 the system has
[under the conditions (20)] one and only one solution
in C, the degree is plus unity for A = 0 as well as for
any other value in [0, 1], including » = 1. This is
equivalent to saying that, if conditions (20) hold, the
system (8) has at least one solution in C. Naturally,
the degree may still be unity if (8) possesses an odd
number of solutions, so that nothing can be inferred
about the uniqueness of the solution from this argu-
ment alone,

Conditions (20) coincide with conditions (28) of 1.
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Hamilton-Jacobi Theory on Lie groups is discussed, and an error in a previous paper is corrected. A method
for “analytically continuing” geodesics from compact to noncompact Lie groups is presented,

1. INTRODUCTION

In Ref. 1 I proved certain facts about geodesics of
left-invariant pseudo-Riemannian metrics on the Lie
group SO(3, R), and I claimed to deduce from these
facts that there were such metrics which were not
complete, Jensen and Schaffer pointed out to me,

in a private communication, that this deduction is in
error, and that one can prove directly that these
metrics are in fact complete.

This paper has two goals: first, to discuss some
general facts about left-invariant dynamical systems
on Lie groups, then to discuss in more detail the case
where the Lie groups are SO(3, R) and SO(2, 1), and
then to clarify the confusion generated by the claim of
Ref. 1. For general differential geometric back-
ground, Ref. 2 will be used. Certain of the topics to
be presented here concerning the Poisson bracket
structure on Lie groups are related to the material
presented in Ref. 3.

Now, mechanics on manifolds can be developed from
both a Lagrangian and Hamiltonian point of view.
The Lagrangian approach was emphasized in Ref. 2,
although the Hamiltonian approach was also briefly
treated there, and further in Ref. 3. We will then
begin with the Lagrangian approach involving the
tangent bundle, as an introduction, then switch to the
Hamiltonian, cotangent bundle viewpoint. Certain of
the facts presented here about “Poisson bracket”
structures on Lie groups are of much more general
interest than the geodesic problem with which we
started.

2. THE EULER EQUATIONS FOR THE GEODESICS

The Euler equations referred to in the title of this
section are the equations of motion of a rotating

rigid body.2 In Ref. 2 the differential-geometric mean-

ing of these equations was discussed. Here, we will
present the results of that discussion.

Let M be a manifold of dimension n. Choose indices
and the summation convention as follows:

l=i,j=n

Let T(M) denote the tangent bundle to M, and let (w;)
be a basis for differential 1-forms on M. Consider
these forms as 1-forms on T7(M) without any change
of notation, via the pull-back map n*, where

7: T(M) - M is the fiber space projection map. Let
y; denote the real-valued functions on T(M) defined

as follows:

y,(v) = wv) for v € TWM).

Then, the 1-forms (w;, dy,) form a basis for 1-forms

on T(M).

Let t »o(f), 0 =<t = 1,be a curve in M. Let
t = o'(t) € M,(,, denote its tangent vector curve., We
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then have the following relation:

o*(w;) = y,(d’())dt. (2. 1)
Let L: T(M) — R be a real valued function on M. In
classical mechanics such a function is called a Lag-
rangian. Let L, L, ., denote the functions on T{(M)
defined so as to satisfy the following relation:

dL = Lw, + L,,;dy,. (2. 2)
Let (c;,;) be the functions on M [hence also on T(M)]
which satisfy the following relations:

dw; = ¢y, (2.3)

W A Wy,

Gpi T Gji = 0. (2. 4)

Definition: A curve { — o(f) in M is an extremal of
L if it satisfies the following set of differential
equations:

4L al0"®) = L")

+ L, (0’(t))y]—(0’(l‘)) C}'ik(o(t» =0. (2.5)

(See Ref. 2, p. 172 for an explanation of the relation
between these equations and the notion of “extremal”
as defined in the calculus of variations and classical
mechanics.)

Now, Egs. (2. 5) take a simple form if the following
conditions are satisfied:

(i) M is the underlying manifold of a Lie group G,
with the (w,) a basis for the left-invariant 1-forms
on M. (2.6)

(ii) L;=0. 2.7

Thus, in case (2. 6) is satisfied, the (cj,".) are constants
—in fact they are just the structure constants of the
Lie algebra G of G, relative to its basis which is dual
to the (w;). Explicitly, if (X;) are the vector fields on
M which are dual to the w,, i.e., which satisfy the
conditions

w(X;) =5
then
[Xi’Xj] = iijk‘

Condition (2. 7) means that L is a function of the y,
alone, i.e. is a function which is invariant under left
translations by the Lie group G. Thus, if (2. 6) and
(2.7) are satisfied, Egs. (2. 5) reduce to the following
equations:

{2.8)

ijs

(2.9)

2 L) + L0003, (0)c;5= 0, (2. 10)
where
»;(t) = 3,0’ (2))- (2. 11)
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In particular, notice that Egs. (2. 10) are equations
which involve the y,() alone, not directly the coordin-
ates of o{f). Thus, the curves { — o{f) which solve

(2. 5) may be found in two stages: First, find the func-
tions y,(f) which satisfy the first-order differential
equations (2. 10), and then find the ¢ — o(¢) in M which
satisfy the first-order equations

0*(wi) = yi(t)dt- (2.12)

Equations (2. 10) are the key equations for this program
and are called the Euler equations. As a special case,
we may consider L of the following quadratic type:

L =38;%5% (2.13)

where (g;.) is a real, constant symmetric matrix.
Then, the Euler equations (2. 10) take the following
form:

dy,
&ij ;;] + &p Vi€ = 0. (2. 14)

In case G = SO(3,R), these equations have interpreta-
tions in both geometry and mechanics. Geometrically,
the curves ¢ — o(t) which satisfy (2. 10) and (2. 11)

are the geodesics of the following Riemannian metric
onM:

ds? = g w;w,. (2. 15)

( indicates symmetric product of differential forms.)
The metric defined by (2.15) on M is invariant under
the left action of G = SO(3, R) on M. In mechanics,
Egs. (2. 10) and (2. 11) are the equations of motion of
a rotating, force-free top, with (gij) the moment of
inertia matrix. In particular, it is known from mech-
anics that the solutions of (2. 14) can be written down
explicitly using elliptic functions. (The Jacobian
rather than the Weierstrassian elliptic functions are
needed for this purpose.) This viewpoint can be re-
versed, and Egs. (2. 14) can be used to study the main
properties of the Jacobian elliptic functions. This
program was carried out partially by Tricomi4 in
Ref. 2, Chap. 17, and in definitive form by Hille.5 In
this paper, we will use Hille's form of the results to
study certain properties of geodesics of left-invari-
ant metrics on Lie groups. However, before treating
this specific case, we will discuss further general
facts, related to the Poisson bracket structure on Lie
groups,

3. THE POISSON BRACKET WITH RESPECT TO A
MOVING FRAME

Return to the general situation where M is a manifold,
with a basis (w;) of 1-forms for M. Let T¢(M) = N be
the cotangent bundle to M, i.e. an element o € T4(M)
is a real-valued linear form: M, — R on the tangent
space to a point p of M. Let (z,) be the functions on N
which are dual to the wj, i.e., which satisfy the follow-
ing condition:

a = z(a)w;(p) for a € Mg 3.1

Let 6 be the following 1-form on N, called the contact
1-form associated with M:

6 =2z.w, 3. 2)

1

[Again, we make no notational distinction between a
form on M and its pullback to T¢(M) = N via the fiber
space projection map.]| Set

Q = de. (3.3)

Then,  is a closed 2-form on N of maximal rank that
determines a Poisson-bracket, Lie algebra structure
{, } on F(N) in the following way2:3:

Given f € F(N), let ¥; be the vector field such that
af = Y; _1Q. (3.4)
o, ol = Y, (o). (3. 5)

Our goal in this section is to compute an explicit

formula for the Poisson bracket, when 4 is given by
formula (3. 1), and

Set

dw; = Cipyj A Wy, (3.6)

where the (c;,;) are functions on M.
Given f € F(N), let f, f,.; be the functions such that

df = fw, + fo; d2;. 3.7
Let X, X, .; be the vector fields on N such that

X(f)=f, X,;(f)=f, forfe F(N). (3.8)
Now, using (3. 1) and (3. 2), we have

Q =dz; A Wt 26w A Wy 3.9)

Using (3. 3), (8. 6), and (3. 7), we have

X(loy +X,.,(Ndz; = X, 1@ = X (2,)0; — wy(X)dz;

+ 2z;¢,; w(X)w, [using (3. 8)].

Thus, we have

wi(Xf) = A4 (f) (3. 10)

X,(f)=X;(2,) + 22, 0; (X))
= X (2,) — 22;¢,, X, ,(f) [using (3.9)].

ik “Tnrj
Hence,
Xf = w; (Xf)X, + X_f(zk)Xn+k
= Xn+i(f)Xi + Xk(f)+ 2z.c; Xnti(f)kaf

i-jki
(3.11)
Let f,f1 € F(N). Using (3.4), (3.7), and (3. 10), we have

{f,fl} Z—Xf(fl)
= fuei fil — bk T 2zickjifn+jfn1+k° (8.12)

Formula (3. 12) is the main result of this section. It
generalizes the classical formula for Poisson bracket
which is found in all mechanics books (and to which

it reduces in case dw; = 0). We now study its pro-
perties in case M is the underlying manifold of a Lie
group.

4., THE POISSON BRACKET ON THE COTANGENT
BUNDLE OF A LIE GROUP

Keep the notations of Sec.3. Suppose in addition that
M is the underlying manifold of a Lie group G.
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Suppose also that G, the Lie algebra of G, is identified
with the Lie algebra of vector fields on M that are
invariant under left translation by elements of G.
Suppose (w;) are a basis of 1-forms on M that are
invariant under left translation by G. Then the (c;,;)
are constants. Let (X;) be the vector fields on M

that satisfy

Then, the X; are a basis for G, and

[Xi’ X ] 201]): (4- 1)
i.e., the ¢;;, are the structure constants of the Lie

algebra G with respect to the basis (X;).

Suppose that f, f1 are functions on N = T4M) that are
functions of the z; alone, i.e.,

0=1;=£1 = X(f) = XX/f) (4.2)
Then, using (3. 11), we have

{A 7Y =226, fn; Filr - (4. 3)
In particular, we have

{2, 2, = 26,2, 4. 4)

which are the same as relations (4. 1).

We can explain this relation in basis-free terms in
the following way. The fiber of N = T'¢(M) above the
identity element ¢ of M = G can be identified with G4,
the dual space to G. N can be identified with the pro-
duct M X G4. The functions f € F(M) that satisfy

(4. 2) are the functions on N = M X G? that are func-
tions on G4 alone. Thus, the set of functions f, f1 that
satisfy (4. 2) can be identified with F(G¢). Now, each
X € G4 defines a linear function

fx o= aX) = fo(a) (4.5)
on G4. The z; are the functions that correspond in
this case to the basis elements X, of G. Thus, we have
proved the following result.

Theorem 4.1: The Poisson bracket operation on
T4(G) defines a Lie algebra structure on F(G?) such
that
Lrrt={frtrm+ 5t for f,f,f" € F(G). )

(4.6

The linear mapping defined by (4. 5) of G — F(G4) is
a Lie algebra homomorphism, and defines G as a Lie
subalgebra of F(G9).

We can now extend the mapping (4.5). Let S(G) be the
symmetric algebra G, i.e.an element of S(G) is an
element of a symmetric tensor product G with itself.
S(G) is made into a commutative, associative algebra
using the symmetric tensor product. G can be identi-
fied with a subspace of S(G). The map (4. 5) can then
be extended to a map S(G) — F(G?) using the following
formula:

4.7

X=X, X, €SG),then fr=4f " f,

J. Math. Phys., Vol. 13, No. 4, April 1972

The linear map (4. 7) is one-to-one, and an algebra
homomorphism, and hence defines S(G) as a linear
subspace of F(G?). In particular, S(G) has a Lie
algebra structure, and we have proved the following
result.

Theorem 4.2: If G is a Lie algebra, S(G) has a Lie
algebra structure such that

[A,AIAII] — [A,A']A" + AI[A, A”]

for A, A, A" € S(G). (4.8)
G, as a linear subspace of S(G), is a Lie subalgebra,
with the inherited Lie algebra structure identical

with the one with which we began.

Now, let U(G) be the universal associative enveloping
algebra® of G. It has a filtration G = U1(G) C UZ2(G)
C --+ . It can be proved® that the associated graded
associative algebra is S(G), i.e.,

$7G) = U"(G)/U"1(G),

r=12- (4.9)

where S7(G) denotes the subspace of S(G) consisting
of the symmetric tensors of degree . An element

A € U(G) is called a Casimir element if it lies in the
center of U(G). The following result now follows
from (4. 8).

Theorem 4.3: Let A be a Casimir element of U(G).
Then the corresponding element in S(G) and F(G9)
lies in the center of the Lie algebra structure defined
above on these spaces.

Theorem 4. 3 has a consquence for “classical mech-
anics” on M = G. Suppose k is an element of F(G%)
that is regarded as a Hamiltonian for a mechanical
system on G. Given a Casimir element A of U(G),
denote by f, the corresponding element of F(GY).
Then, by Theorem 4. 3,

{r, 5 =0,

i.e., f, is an integral of the motion generated by the
Hamiltonian k. For example, if G = SO(3, R) and if &
is the Hamiltonian corresponding to a rotating, force-
free rigid body, then, if A is chosen to be the usual
second-order Casimir operator, f, is the “integral of
total angular momentum.”

(4. 10)

Now—as pointed out to me by Jensen and Schiffer—
these remarks prove the following result, which
contradicts the main result of Ref. 1.

Theovem 4.4: Suppose that /2 is the Hamiltonian
of a mechanical system on M = G that is invariant
under left translation by elements of G. Suppose that
G is a compact, semisimple Lie group. Then the
system defined by & is complete, i.e., extremal curves
can be indefinitely extended.

Proof: Let ¥, be the vector field on T4(G) =
G x G defined by #, using formula (3.3). Then Y,
is tangent to G4, since h is a function of the (z, ...,
z,) alone. Let A be the second-order Casimir
element of U(G) defined by the Killing form of G. Let
fa be the corresponding element of F(G%). Then the
level surfaces f;1(a), for each ¢ < R, are compact,



GEODESICS AND CLASSICAL MECHANICS ON LIE GROUPS 463

and X, is tangent to them. Hence, the integral curves
of X, can be indefinitely extended, which means that
the system is complete.

One may suspect then that the simplest example
where the integral curves of X, cannot be indefinitely
extended is that where G is a noncompact, semisimple
Lie group, e.g.,S0(2,1). We shall then turn to a study
of this example.

5., GEODESICS OF LEFT-INVARIANT METRICS ON
COMPACT AND NONCOMPACT SEMISIMPLE
LIE GROUPS

Let us return to the general situation described in
Sec. 2,i.e.,M is the underlying manifold of a Lie
group G, with (w;) a basis for left-invariant 1-forms.
Let (X)) be a dual basis for the Lie algebra G of G.
Let ds? = g ,w;*w; be a left-invariant metric on M. If
{ — o(t) is a geodesic of this nature, set g, = w;(0’(£)).
Then, the y, () satisfy Eqs.(2.14). Set

X(t) = y, ()X, (5.1)
Then, { — X(t) may be regarded as a curve in G. Thus,
Egs. (2. 14) translate into the following basis-free
equations for the curve ¢ — X(¢):

dx -
—dT =A 1[AX, X],

(5. 2)
where A is a linear transformation G — G. Equation
(5. 2) was also derived in Ref. 2, p. 430, independently
of the Lagrangian approach to the Euler equations.
If G is a semisimple Lie algebra, with B(, ) its
Killing form, 6 it was shown in Ref. 2 that A could be
chosen to be symmetric with respect to the Killing
form, i.e.,

B(AX,Y) = B(X,AY) forX,YeG. (5. 3)
Let us suppose that G is a compact semisimple Lie
algebra,® and that K is a symmetric subalgebra® with
the following Cartan decomposition€ of G:

G=Ko P,[P,P|CK, [KP|CP. (5. 4)
Let us also suppose that
AK)CK, AMP)CP. (5. 5)

Now, consider G as a real subalgebra of its com-

plexification G, = G ® C. Then, G’ defined as follows

is a real subalgebra of G, whose complexification

is again G_, i.e., G’ is a noncompact real form of G:
G' =K + iP. (5. 6)

Given { — X(t) satisfying (5. 2), let X, ({) and X, (¢)
denote its projections in K and P.

Now, let us suppose further that A satisfies the
following condition:

[AX,X]=0 forXeK. (6.7)
Then, using (5. 4) and (5. 5), the curves { - X, (f),
X, (t) satisfy the following differential equations:

X,
—*d—'t- =A [AXP’ XP]’
(5. 8)

aXp -1 -
7 = A [AXK’ XP] + A 1[XK’AXP]'
Let us suppose X(¢) is defined in a neighborhood of

t = 0 as a solution of (5. 2). Then, using the standard
existence theorem5 for analytic differential equations,
it can be extended to be a complex analytic function

if the complex variable u = { + is in a neighborhood of
# = 0. Set

Y(t) = iX, (it) + Xp(it). (5.9)

Then, using (5. 7), we have

% =— ATHAX, (it), Xp(i8)] + ATYALX, (it), X, (1))

+ AT[iX, (it), AXp(iD)].  (5.10)

Notice that these equations are the same as (5. 9),
except that the Lie bracket [ , | for P has been chang-
ed into its negative.

However, we see from (5. 6) that this is the Lie
bracket for G’. In particular, Y(¢) satisfies a differ-
ential equation analogous to (5. 2), but with the Lie
bracket[ , ] for G replaced by the Lie bracket [, |’
for G'. In particular, if Y(0) € G’, then Y(¢) belongs to
G’ for all real {. The resulting equations for Y(¢) are
the Euler equations for geodesics of a left-invariant
metric on G’. Thus, we have given a precise sense

to saying that the “differential equations for the
geodesics of a left-invariant metric on G are analyti-
cally continued to the geodesics of a left-invariant
metric on G'.” In particular, this gives us the follow-
ing result, which may be regarded as describing a
criterion that the left-invariant metric on G’ defined
by A be incomplete

Theovem 5.1: Suppose that u — X(u) is a curve in
G, that is defined and meromorphic in the entire
complex u plane and that satisfies the following
differential equation and initial conditions:

ax _ AT1[AX, X),

n X() € P.

(5.11)

Also suppose that A is a complex-linear map:

G, - G satisfies (5. 3), (5. 5), and (5. 7). Then, if the
curve # — X(u) has at least one pole along the imagin-
ary axis u = il, { € R, the left-invariant metric on

G' defined by A is incomplete.

This result applies, in particular, to the case G =
SO(3, R),G' =80(2,1). It is well known that the solu-
tions of (5.11) in this case are given by the Jacobian
elliptic functions, which do indeed® have poles along
the imaginary axis.

Finally, I hope that this result will clarify the major
error in Ref. 1 which was pointed out by Jensen and
Schiiffer. I also would like to remark that this exam-
ple of an incomplete metric on SO(2, 1) may be use-
ful as an example for a possible general theory of
incomplete homogeneous pseudo-Riemannian mani-
folds, a topic that would be very important physically
because of its connection with the study of singulari-
ties in cosmology.
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We apply (Laplace, Fourier, . .

.} transform methods to obtain compact representations of the perturbation S-

matrix elements for interaction Lagrangians which are general nonpolynomial functions of isospin multiplets.
In order to illustrate the power and simplicity of the method for coping with the isospin complications, we have
treated several examples in detail, and these include the commonly used parametrizations of the unitary chiral

SU(2) % SU(2) transformations.
1. INTRODUCTION

Many of the nonpolynomial Lagrangians one en-
counters in physical examples involve internal sym-
metry groups like SU(3) ® SU(3) where nonpolynomial
functions of the field and generators make an appear-
ance. The simplest instances of this are functions
like exp(y;A7+¢) or (1 + x2¢ 2)~2 which depend on an
Su(2) 1sotr1p1et of fields ¢. Perturbation calculations
with such interaction Hamiltonian functions can then
become exceedingly difficult in comparison with cal-
culations involving one scalar field only. We describe
below a way of simplifying these computations by
using transform (Laplace, Fourier, . ..) methods
whereby the isospin complexities are extracted out
and the integrals to be evaluated are similar to the
integrals one would meet for a single scalar field.

Section 2 summarizes the rules of calculation when
there is just one field ¢ and the potential V(¢) is
some general function of it; the results to second
order in V are listed for some typical functions. Sec-
tion 3 generalizes the method of transforms used in
Sec. 2 to the more physical situation of a multiplet of
fields ¢ when V is a scalar function of them. The
case when V is a matrix function of at most an iso-
triplet of fields (e.g., expAt*¢) is studied in Sec: 4 and
examples are given for some commonly met para-
metrizations of chiral models. We shall not consi-
der derivative interactions of mesons in this paper.

2. MATRIX ELEMENTS FOR NONPOLYNOMIAL
INTERACTIONS

In this section we shall give a brief resume of some
techniques!-2 for evaluating Green's functions in a
Lagrangian theory of a single scalar field ¢ with
some specified interaction Hamiltonian V{¢) which is
in general a nonpolynomial functional of ¢. One works
in the interaction picture with the free propagator

0T[px)p(x)]10) = (¢, =Aalx— x’), (1

and then, to order V¥ in the perturbation development,
the n-point Green's function is described by the x-
space matrix element:

SMA) = Sy oo (K10 %z oo ) (2)

with # = 2 n; and where n; denotes the number of
external lines meeting at point x;.
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There are many equivalent ways of expressing S¥x)
in terms of V,but the most convenient for our pur-
poses is the form?

T
N —
S (x) = €xp < Z)Aua(b a¢> n< > V(¢k)‘¢:0, (3)
wherein A;; = Alx, —x ) and ¢; = ¢(x;) are regarded
as c—numbers. The summatmn in Eq. (3) is over i#j
if V is normally ordered. The simplest way of eval-
uating S is to get an integral representation for it

using transform methods.3 Thus if we express V in
terms of its Laplace transform U:

= [C0()e-wsat, (4)

or its Fourier transform V:
[«
Vig)= [ P&

it is a trivial matter to arrive at the expressions

S¥(x) = (— 1)"’21'11:1 <f0°°dckc;’kv(§k)> exp é};z Gig; Aij)

Red g, (4)

or ’ (5)

SV (x) = (— i)~ <f d&kggkv(gk)> exp( éZ&ingi])
ij

(5"

using the fundamental result that
(exp(r¢), exp(r’¢’)) = exp(ar’a). (6)

Strictly speaking, of course, Egs. (4) and the ensuing
representations (5) have validity only for certain
types of function V. However, as ¢ always occurs
multiplied by a dimensional minor coupling constant
A in nonpolynomial interactions, we can usually apply
these transforms for a certain complex domain of
and then analytically continue the representations (5)
if necessary to the physical value of A. In so doing,
one will, in general, encounter singularities in the
region of auxiliary ({ or £) variable integration, and
one of the chief problems of the theory is to define
these such that the S¥(x) are real in the Euclidean
region—it is here that ambiguity problems may
arise.4 However such sources of difficulty are not
our concern in this paper; rather we shall be espe-
cially interested in the complexities which arise when
one must deal® with a whole multiplet of fields ¢ as
we do later on. Let us therefore pass over this par-
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in the interaction picture with the free propagator
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ticular ambiguity problem by mentioning that pre-
scriptions, like taking Cauchy principal values, etc.,
can be devised for defining contours in the { and §
planes to render S¥ real for all x = 0 (i.e., A finite).
The passage to x = 0(A = ©) can be a second source
of ambiguity as it has to do with the definition of dis-
tributions ¢*(x) which enter whenever a power series
expansion of V(¢) in powers of ¢ is made.® For re-
solving this difficulty, incidental though it is to the
object of our exercise, we shall always interpret S(x)
as a classical function whenever its Fourier trans-
form S( p) exists—otherwise S(x) requires renormal-
ization3 in the traditional way if its behavior in A as
A - @ is polynomial.

It is not necessary in practise to evaluate every
Snlnznb"' nN(x) because of the fortunate circumstance
that differentiation with respect to A increases the
number of external lines. Specifically,

0
ms’ﬁ”z"a“"w(x) = Sn1+1n2+1n3...nN(x), etc., (7)
can be proved from representations (3) or (5). Thus
it is sufficient to evaluate just the matrix elements
S,a ...q (%), a considerable saving of labor. In fact
most of our attention will be focussed on the second
order functions S2(x, — x,) = S, o(*;,%5) as these are
the only elements one can readily calculate in terms
of familiar functions. (Higher functions $3,54,---,
even for the simplest nonpolynomial interactions,
bring in confluent hypergeometric functions of three
or more variables whose properties are not well
known.)

The power of the transform method for arriving at
compact representations of the Green's functions is
best illustrated by working out S, o(x) for some
typical interactions.

[1a] Polynomial and exponential:

V() = grers, (8)

where we take v integer and A > 0 for the present.
Therefore, V() = 6¥({ — 1) and the auxiliary ¢ inte-
grations are easily carried out to give

S0 = 1)"<A—a%>y(§”*“e>‘@)lg=}\. (9)

Thus for v = 0 or A = 0 we recover well-known
results. Indeed the continuation to noninteger v may
be regarded as a definition of the distribution ¢*,

[1b] Rational:
V() = ¢¥(1 + xgp)H, (10)

where we take A > 0 and v, y positive integers with
v > u at first. Thus

@) = 1 (“587\)“—1 <aic> e ( Lo + 0)>

One of the auxiliary { integrations is easily carried
out to leave us with the matrix elements

CDn L (0N ey [©gp AZO" (ML) v
T <ax2> LA (1 — A2AQ)H

(11)

n0 =

all of which can be expressed as derivatives of the
basic function

[Fae—et 1 E1<—1—>
o 1 —x2A€  A2A  \\a27

As this function has infinitely many sheets, we can
define it on the principal sheet by taking the princi-
pal value of the { integral.

[1c] Gaussian:
Vo) = () e, (12)

In this case it is more appropriate to use the Gaus-
sian transform:

9\? _a242 1 2
) e-re/2 — dn.e /2+n Ao, ()(r])'f
o) = m

S2n 0 = 2i [ dndn’ () +2n(an’ypemnt/2n"2/ 2emAZA
7\’ (2n)!
= (zA2)" <8A> Wl 11—

whose real part must be taken. Thus beyond the
branch points at A = = 1/x2 we are obliged to define
S,, o = 0 by averaging on each side of the cut.

A4A2]1/2-n, (13)

If we formally expand (8), (10), and (12) in powers of
¢ and use the fact that

(pn, ¢'m) =n1am,

the power series in A which follows, of course, agrees
term by term with the expansions of (9), (11), and
(13). Besides the obvious fact that the transform
technique automatically sums these series, there is
the advantage that it also interprets the series as an
asymptotic one [e.g. in Eq. (11)] even when the series
is formally divergent—the ambiguities? of such sum-
mations are then reflected in the possible choice of
auxiliary variable contours which avoid the singulari-
ties in the range of integration. However, although it
would be fair to say that the results we have listed
above can be obtained by other means without a great
deal of difficulty, to our knowledge the results given
in the next sections are not easily obtained in any
other way9.

3. SCALAR INTERACTIONS AND MULTIPLETS OF
FIELDS

Consider now the situation where one has an R-
dimensional multiplet of fields ¢ = ¢,, a =1,...,R,
and an interaction V(¢) which is a scalar function of
them. The N’th-order matrix elements will be des-
cribed by tensors S, ....a,b,.-,--- (g, Xy e e ey

refer to the field
The correspond-

> V(¢k)l¢=0’

(14)
and since {¢,, ¢}) = 8,4, the index of the exponential
reduces to 377, A;.92/0¢,,0¢,;. The transform tech-

% y), Wwhere the n; labels a;,b;, ...
components entering at vertex x;.
ing generalization of (3) is

a\ ] a_ .
S40) = e (123 758,36 ) 1 (a¢,,k 70,
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nique is again indicated for alleviating the com-
plexities of “isospin.” Generalize (4) and (4') to

V(@) = [ V)et2art (15)
and o )

Vig) = f_w 7(£)e-it 0aRe 15)

so that the Green's functions reduce to
N 0

5969 = C 1l ([ TaReL,, 5, o 00)
k=1 0 k%%

xem (s73e8,8,) (10

or

(—2)n f—v[ (f_‘” ngkgak'gbk oo f/(gk)) exp<—— %Egingi]> .
k=1 o ij

(16")

Because V is a scalar,V = 0(|C]) and V = V(| £]).
To make further progress, break up S into scalar
functions S:

Sa

— ) )
by ragby e ayby e —?Kalbl---aNsz s amn

where the number I is related to the number of ex-
ternal lines and the way they are attached to the vert-
ices. Because of the supposed linear independence of
the K1, it is possible to discover the S{ by taking I
different traces over the tensor labels. After tracing,
the integral representations (16) reduce to the final
form

N

Smlm2 ey = ’5:11 (fdﬂﬁk lgk l "k ‘0(l§k |)>exP(%E§,§] A;’j)
(18)

and derivatives thereof with respect to the A,;. The

whole problem then boils down tv the evaluation of

certain scalav integrals like (18).

To illustrate, consider the third-order four-point

function described tensorially by S, 5 o o (%1,%5,%3)-

. . 1717273
It decomposes kinematically as

= balblﬁazaas«)) + (ﬁala2 ablaa + 6alasﬁblaz)s(_;.lg))

Salblazaa
so that
R25@ 1+ 2RSM
= S = [ 45008, 1)] exp()18, 120,24
0
= mgszoo
and, from Sy,
RSO + R(R + 1)S®
= 1 (fdﬂckv(lckn) exp( )6 8818
k=1

92 s

which can be solved for S(® and SV in terms of the
S, etc. Thus, if we are interested in the second-order
functions, the relevant integrals to be computed are of

the type
Spme = JARCARE ] m || mret- 27 20(|E]) O’ ]),(20)
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which can be done without too much trouble as they
reduce to a triple integral (one angular, two radial)

Sy = J AR P RAL MBI (£) D (¢)
X fde(Sina)R‘zeEG'ACose. (21)

If R is odd, the angular integrations leave us with
exponential forms e%’4 and derivatives thereof, but if
R is even, Bessel functions arise. We give examples
below for R = 2 and 3 which demonstrate this ex-
plicitly.

[2a] Two-dimensional multiplets ¢ = (¢4, ¢5):
Take V(¢) = e~*¢, where ¢ = (¢2)1/2, and use Fourier
transforms

(&) = i;—zj'eiwv(rp)dza

so that, for A > 0,

1a 1
2m ox (A2 + g2)1/2°

(22)
The vacuum matrix element, the so-called “super-
propagator,” is given by

_i 02 foo gd& gldgr
T 2m AN 0 (A2 + £2)1/2 (A2 + £2)1/2

V(E) = —1-— f(i)dqbdﬂe(ﬂcose—)\)qj - _
42

500

m
X j;) e t87o cosegy,

Let us take A pure imaginary so that angular inte-
gration gives 27J O(z'ég’A) that can again be integrated
wrt £’ to leave us with the final form
;52
_}\¢ e-)\/ (Y4 [ i
(e, 4 A AN jO (1 + g2)1/2

.we-igx}\/A

dg,

which is an inhomogeneous cylinder function. In fact,
if we symmetrize in A and X',

7 92 ,
2A NN Lo(ana)

TAN A
2

where the appropriate cylinder function? is just the
Struve function L:

(coshr¢, coshh'¢’) =

=1+ Lo(\'a), (23)

sin(z¢)
(1 + £2)1/2-v d£.(24)

1w o0
L) =1, () — —&2)
’ Y 2TG)T(V + 3) Jo
L(z) is an entire function of z as can be seen from

the series development
s (%z)u+2m+1

L,@)= 2

3 3 (24,)
m=0T{m + E)F(V +m + 3)

and indeed an alternative derivation of (23) is to use
the power series expansion of coshi¢,

((¢2)7, (¢'2)) = [T + 1)]2(24)%", (25)

and to identify the resulting series in A as a Struve
function.

[3a] Three-dimensional multiplets ¢ = (¢4, ¢, P3):
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Let V(¢) = (1 + x¢)~1, where ¢ = (¢2)1/2. 1t is easy
to check that for this case the Laplace transform is

V(L) = 2e-8/2/mA2¢.

The vacuum expectation value will be given by3

;1 1 >
N +ag 1+ N

= f{de §r2dg’ € 5/{\ € ;?\, o d(COSQ)eC;'A cos@
A’I !
_Le~tdf
= f T At (26)

More complicated examples can be built up from (26);
thus

(P s ™

Az(pz 1 — )t2¢'2 7\4A2§2

which incidentally shows that in three dimensions

{(p2)2, (¢'2)7) = T(2n + 2)a2" (28)

and can be compared with the two-dimensional
result (25).

One may discover the generalizations of (25) and (28)
to an arbitrary R dimensional multiplet using Fourier
transform methods. When V{(¢) = (¢2)7,

(~1)"T@ + 3R)62%(£)
2T(n + 3)(n1/2g)51

= (92)n, (9'2)™
=Va[I'n + $R)/T(n + $)]2(a22/TGR)T(3R — 3)]

7 =

X fdg dt’ do (sing)B-2e-Ee! cose52n(£)52n(E")
_ T + 3R)
I'(zR)
Formula (24) is a useful one whenever series ex-
pansions in powers of A;; are made for their sub-
sequent transformation into Sommerfeld-Watson con-
tour integrals. It also shows the fundamental distinc-

tion between odd- and even-dimensional spaces in the
series they engender.

T'(n + 1)(24)27, (29)

4. MATRIX INTERACTIONS

We finally consider the problem when ¢ enters as a
matrix in the interaction. Thus suppose V = V(@) is a
matrix function of & = & I',¢,, where I" are a
specified set of m X m matrices with stated anticom-
mutation properties
{r,, 0} =d,;.L.. (30)
We are interested in the S-matrix elements which will

be N direct matrix products. The difficulty we now
meet is that

(9 T,e¥T) = gl"IV4,

except for the trivial case when all the I' commute.
We have not been able to solve this problem in com-
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plete generality except for the case when R = 2 or 3
so that I refers to SU(2) matrices—which is good
enough for treating SU(2) ® SU(2) chiral interactions
such as e*’s7° % or (1 + AysT- {1 — Ay57- @) 1. Let
us then demonstrate the method by some examples.

[2b] Suppose ¢ is a symmetric Hermitian 2 X 2

matrix so that & = 0,¢, + 03¢5, and take the case
where

V = eir® = cosr¢ + ig-d sim¢

= (1 L 50 37’) cosA¢.

Now in general one can establish the lemma

<%F( ’a¢ F(¢ > dec dRCI C Cb ( )Sf(cl)ez-;rA

— 04 [AE dE (€ 8)et EATOF(E)

(31)

— 30 3 A<F(¢) F(g'). (32)
Therefore, we have
(eire, eirer) = (1 @1 ——21—20 & aa—>(cos>\¢>, cosr¢’)
;\2
=12 11— 5 LO(—AZA)
9 mA2A
+ (0, ® 0, + 053 ® 05) ——— ~——=L,(— A24),
(0, 1 3 3 a(2a) 4 0
(33)
making use of the continuation of formula (23). The

A — o asymptotic expansion of the Struve function is
prov1ded by I,(— 224) and produces exponential terms
e 24 gimilarly to the one-dimensional case; thus
there is an essential singularity when x — 0.

[3b] Let V = ei*¢ again, with & = 0,¢, + 0,0, +
03¢3. The steps are as before except that there are
three dimensions, and in place of (23) we have

(cosAg, cosre’) = aA[A cosh(x24], (34)
i PNy 9
o (eire, etr ) = [l@ 1-3000 (A2A)}
x[cosh(x24) + A2A sinh(x24A)]. (35)

[3c] Suppose that we take the alternative para-
metrization V(¢) = (1 —éAx®)/(1 + iA®). By using the
integral representation

= Lwdn e "2e

and formula (35), the superpropagator reduces to

—i}\‘i’n_l ]

(V(®), V(&)
= Lwdndn'eﬂw)@(e—inw, eg-imiern 3.1 @ 1)

= fooodndn’e'(mn')[l ® 1(— 3+4 —agA—A COSh()\zAT]T]'))
) . ,
(1 + 35 ) sinh(x2Ann ):l

4202
=1®1__g_fooA(1+3xAc)
1—7\4A2§2

—%0®
-t
9A Yo e"tde
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4 0 ©  AZAlet
and so on.
The basic reason why we have been able to make
good progress with the above computations is that
SU(2) matrices T of degree j satisfy polynomial
equations F; (I'*¢) = 0 so that expansions in powers
of ¢ always terminate in their tensorial complexity.

For larger groups like SU(3), where the anticom-
mutation structure constants are not so simple,? an
alternative procedure will need to be devised. This
will be relevant to gravitational interactionsl? in
exponential coordinates where g, , = [exp(n + «h)],,
is a 4 X 4 symmetric matrix, with 5 standing for the
Minkowski metric and % for the gravitational spin-2
field.

Note Added in Proof: The cases of gravity and SU(3) have now been
satisfactorily resolved by an entirely different technique. See “On
Matrix Superpropagators I and II” by J. Ashmore R.Delbourgo,
J.Math. Phys. (to be published).
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A model of isotropically interacting v-dimensional classical spins with an infinite range potential of the mole-
cular field-type is solved. The partition function is represented as the integral of ¢” 2#¥ over an appropriate
weight function, which, for given v, is the Pearson random walk probability distribution in v dimensions. A
molecular field-type phase transition is obtained for all v.

1. INTRODUCTION
Stanley! has shown that the Hamiltonian

H? =—gT s, s, (1)
<ij>

where S, = (8;(1), 5,(2), ----,5;(v)) are v-dimensional
vectors of magnitude Vv and [S;(a), S;(8)]. =0 f(for
v > 1 the magnitude of the spin is infinite); hence, for
all v, the model describes classical spins, spans an
infinite class of models ranging from the Ising model
with v = 1, through the classical planar model (v = 2),
the classical Heisenberg model (v = 3), and tending
towards the Berlin—-Kac spherical model as v — o,

Stanley's exact solutions have been confined to near-
est neighbor one-dimensional chains and hence do
not exhibit a phase transition. It is therefore of some
interest to study this model with an infinite range
potential which will yield a phase transition. The
simplest infinite range potential is obtained when
every spin interacts equally with every other spin,
that is a molecular field-type potential.

We study the statistical mechanics of a system
whose Hamiltonian is

N
HY =— (2J/N) 3 8;S;— HoB*Z S, (2)

iSi<GSN

J.Math. Phys,, Vol. 13, No. 4, April 1972

where B is an external field and p, is the magnetic
moment associated with a single spin. Since
I8;ll = Vv,

N
(Z) s,)z =Nv+2 Y ;S (3)
i=1 1<igsN
and
W J(A 2 X
Hy =JV——N ES,- — B ESi. (4)
i =1 i=1

This Hamiltonian characterizes the totality of mole-
cular field potentials previously considered; for v =1
it is the Curie-~Weiss Ising model. The work of the
paper is arranged as follows:

In Sec. I the partition function @, is evaluated by re-
ducing the summation over all the spins §,, i =1, 2
. .&,N, to integration over the simgle variable S =

Z;i=lsi‘ In this way the partition function is expressed

as a functional of a Pearson random walk probability
distribution. This representation explicitly displays
the connection between the molecular field-type phase
transition and the underlying random walk. The
distrijbution has a well-known integral representation
and the multiple integral obtained for @, is evaluated by
the method of steepest descents (generalized to such
multidimensional integrals). The mechanism of the
phase transition (in the case B = 0) is then the
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“sticking” of the saddle point for T > T,,the critical
temperature.

InSec. IIl expressions for the thermodynamic functions
of interest (magnetization, internal energy, specific
heat for the case B = 0, and susceptibility for B = 0)
are developed along with expansions about 7 = 0 and
T=T,

Section IV presents a discussion of these results.

IO. PARTITION FUNCTION

The normalized partition function corresponding to
the Hamiltonian (4) is

Wik, Ky =2z0,001 x 2K, K,),  (5)
where
N
ZI(VU)(K]_;K 2) = e’u}(l[ fexp,: (Z; S> + KZ 'ES‘]
N§0t= Ve =
i X dS, ...dS,, (6)

where K, = gJ and K, = gu,B. Clearly, we have

20, 0) = ( i ds)”

s =y
so that
z(0,0) = [2qw2 v 1/2/T(v/2)]A, )
The integral is just the surface are of a v-ball of

radius vv. The integrand in Eq. (5) is a function of
s=x" S, only and we can write

vav)( Kz) - e"”’(lfipbg")(s)e(KI’N)SM?'S ds, (8)

where P(")(S)ds is the probability that EN 18, € (8,8
+ dS) given that Sl = Vv, Z (0, 0) has been divid-
ed out as it is the measure of the sample space on
whlch we defme P( (8) [for example, for v = 1,

Zy )(0 0)=2% , the total number of walks of N steps}
P(”)(S) is the probablhty distribution for Pearson's
walk 2 whose integral representation was first given,
for v = 2 by Kluyvers and for v = 3 by Rayleigh.4
Now, because of the symmetrical nature of the walks,

Py(s) = P{IS)

RO
- as WN (S)y

Wh%re WA(,”)(S) is the probability that (3,8l <s.
(S) is normalized by

1™ p{s)ds = 1.
~co

The distribution W,"XS) is given by Watson5 and we
find

Ps)

:{I"(v/2)i f ( Sf)”/zJU/Z-l(Sf)< y/2_1(V;t))N

gu/2gv-1 (xﬁ)u/z 1
_ [cw/2)1% (,.3<i S )u/z (i >
T Jvnv2se1 b 2 =4 v\ G

« <Ju/2-1(“)> y

(u)¥/2-1

du, (9)

where J (2) is a Bessel function.

For N >> 1 it is easy to prove,using Watson's lemma,
that

PY(S) ~ [1/(2Nm)¥/2]e-s?/2N (10)

provided S/Nyv < 1. Clearly P’ (S) = 0if S >VU N,
the maximum extension of N walks each of length .
The Gaussian form of the limiting distribution, Eq.
(10),1s a general consequence of the Markovian na-
ture of the random walk problem. The polar integrals
in Eq. (8) are performed using Eq. (A10) of Appendix
A,and we find
(a)(Kl, 2) = 1ewK, f (v)(s)exlse/;vzﬂulzsvd

Iv/Q‘l (K2S)

(K, 5721 das, (11)

where [_(z) is a Bessel function of imaginary argu-
ment. By Eq. (9)

[T/2)] e vk,
W

jN‘/;eKlsz/NIV/Z-l(KzS) [f (1 S )”fz
- N5 (%Kzs)u/z—l 0 2\/-—

S N\ (Tvrz-1 N
X g 1(\/1_/_ u) (Eé_u)_"/z_‘i) du]ds. (12)

With the change of variable,S = VuNx, we have®
QY (K1, K,) = N[T(v/2)]"e ™"

xf evNK1x2 1,/3-1(VWNK, %) f In u/2
(3VONK ,x)¥271 |0 (zN

N
X J, . 1(qu)((—”—/)2-712(ﬁi) du} dx. (13)

QYK K,) =

The further reduction of this expression proceeds as
follows. The integral can be recast into an easily
manageable form if we substitute the integral repre~
sentations?

(2_2_)__ /2 izsin 20
) = T+ 3)I'(3) ‘/-n/ze ¢ cos2e¢ dg,
(z2)* w2
1 T e zsin 2o
W) = T T Je® ¢ co8? 6 do. (14)
This gives
Q(u)(Kl, Kz) = o~VK; [T(V/Z)]N N¥

21Ty — P

o /2 5/2
I ~[i dx ‘{) du’ ‘[-rr/z d¢1 ‘In/z d¢2f(x9 2&, ¢1; ¢2)

X eVNg(%,14,01,0;) (15)
where
Flsu, ¢, ¢p) = 2" luv"1(cosp, cosg,)-2,
g(x:“7¢1,¢2) =K1x2 + (I/J;)sz sing,
+ (1/v)ixu sing, + (1/v)
X log[J, g1 @)/ (20)¥/271, (16)
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For large N the major contribution to the multiple in-
tegral comes from around the saddle point of
glx,u,¢,,¢y). This saddle point is determined by

(x=2X,u=u,P = ¢1S:¢2: ¢2S) (17

Explicitly,we have

gé; = K, x + \/1—-;_ K, sing, + % iu singy,

g‘—g = -g— ix sing,— %%:

«a%rl- = :/lf K,x cosgy, 1e)
aa(;z —;—zxu €oS¢y.

1f the trivial solution x_ = 0 is excluded, the last two
equations give cosgb, = 0, so that [sm4>z | = 1. With-

out loss of genemhty8 we may take smgba = 1. The
first two of Egs. (18) then reduce to

20K x, +VwK, +iug =0,
. (19
ixg = dypu )/, e} =0 )

Combination of these two equations yields the trans-
cendental equation satisfied by the saddle point x,
namely?

%= id, p[HQUK X, + WK, 50 [ QUK X + P KD)],

whence
%y =1,,5@QvE x + VWKL) 1, 51 @QvE x  + WK,)]
(20)
and —
1 9 <Il,/2_1(2vK1xS + w/VKz)> 21)
X = —
K, axg [3Q@uK x, + Vv Ky]v/2-1

The method of steepest descents applied to Eq. (15)
yields

QY (,,Ky) ~ e[ (wv/2)]
where
G(xs) = g(xsyusﬂgbl 7¢2 )

/I,,/2 (VK x, +VKp) > (23)
\[ (VK %, + Vv Ky)]7/2 1

Ney, e e - (32)

=— Kx? +——10g
v

and
=0. (24)

ox

Since cosqb, =0, flx,,u, ,gb1 ,¢>2 ) = 0, so that ex-

plicit determmatmn of Cy, u(x }is dlfﬁcult and in any

event unnecessary since log[C, ,(x)}J/N ~ 0,as N >
0, "“This follows because f{x s,us,qul ,q’>2 } is not of
the order e¥.

II. THERMODYNAMICS

The mean magnetic moment per particle of the sys-
tem, M, is given by
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_ /B
=(5 iz..ﬁs‘>’ (25)

and from Eq. {5) we have

N
M =2z;1 ii o f e BHNS) (%% 2 Si) dsy ...dsS, (26)
IS =5 i=1
[ N1SPY) (S)e o/ MISTKyS g
o N @1
=Ho oo .
[ s
It is easily shown that
M = Yvpgx B, (28)

where B is a vector of unit length parallel to B. Now
K x, + VK, =BQuIx, + Vv peB); (29)

by comparison of Egs. (20) and (28) it is clear that
we can interpret 2Jx_ as the “mean field” of Weiss.!0
For B = 0, we have K, = 0, and Eq. (20) reduces to

%= L5 (2vKx)/1, /2 1 (2uKx ) (30)

For K < %, Eq. (30) has only the trivial solution x
0,while for K > % there is a nonzero solution. Thus
a spontaneous magnetization exists for T< T, =
2J/k.

For v =1 and v = 3,from Eq. (20) we recover the
well known molecular field equations

x, = coth(6K x, + V3K,)— 1/6Kx, +V3K,.  (32)
Equation (31) is the classical Weiss equation for the
molecular field, while the right-hand side of Eq. (32)
is a Langevin function of argument 6K ,x_ + v3K,. In
Appendix C we show that for v — «© {and B = 0) we
recover the spherical model result [Appendix B,Eq.
(B12)] which gives the saddle point as

2Kx3 — (2K — 1)x_ = 0. (33)
The Helmholtz free energy per spin is given by

— BY = lim log(@y)/N (34)

N> w0

and by Eq. {22)

— BY/v = (1/v) logT'(v/2) + G(x,). (35)
In the case B =0,when T > T, x, =0 and— gy = 0.
On the other hand,for T < T,, — gy = 0. Thus T, is
the critical temperature of the system. If we let U

and C, denote the internal energy per particle and
specific heat per particle, respectively, then

U—-—J—( BY), C, —sz—z & BY). (36)

Now
sy =

? 3 dax,
B—K(—ﬁkf/) + 3%, ("Bw)'djf

c
=g BY) (37
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since, for T < T,, (3/0x,)(—BY) = 3G/ ax, = 0, while,
for T > T, dx /dK = 0. We find

C dx,
=— Jx2, 7” = ZkKZxSEES. (38)

Clearly U = C, = 0 for T > T,, again the usual feature
characteristic of molecular field theories.

For T=T,, x, 2 0, and from Appendix D we find

x, ~ V(@ + v/ — T/T,), (39)
U/v=—g[(@2 + v)/vil—-T/T,) (40)
-0, (41)

and
C,/v— (R/2)(2 + v)/v, (42)

For T = 0, K >> 1 and from Appendix D we find, for
v =1,

as T -~ T, —0.

%, ~1— 2e4K, (43)
U = — J(1 — de 4K) (44)
-, (45)

and
C,—0, asT -0+, (46)

while, for v > 1,

x, ~ 1 —3[(v = D/VIT/T, (47)
U/v 2 —J1—[(v—1)/VT/T,) (48)
-, (49)

and

C,/v—=(R/2)(v —1)/v, asT —0 +. (50)

These tend to the correct spherical model results
(Appendix B) in the limit v — %, In Fig. 1 the normali-
zed specific heat, C,/vk is plotted as a function of
temperature T, for various spin dimensionalities.

The susceptibility x is given by

_ oM
Xx=Ng- (51)

1.
o] 1.0 AT 2.0
J
FIG 1. Sketch of the normalized specific heat C,/vk as a function of
temperature T for various spin dimensionalities.

For T > T, and with a weak external field B, x, =0
and we use the small argument expansion (Appendix
D, Eq. (D2)] to find

L WKt WKy [ (20K %, + ViK,)?
s E v/2 (v/2)(v/2 - 1)
so that (52)
x, = 2K X + K/, (53)
and we find
x,= poB/Vvk(T — T,), (54)

where T, is the critical temperature for zero external
field, that is, T, = 2J/k. Then, by Egs. (28) and (51),

x = Nu3/k(T —T,) (55)

and for every spin dimensionality the model obeys the
Curie-Weiss law.

IV. DISCUSSION

For a given value of v the Curie~Weiss model is
characterized by a Pearson walk in v dimensions.
This walk has a probability distribution P§*)(S) which
for v =1 is discrete, while for v > 1 is a nonregular
function of S for |S| < v¥ N. The Curie-Weiss
spherical model is characterized by a random walk
\’vh,ich has a probability distribution P, (S) regular for
51 <N.

The Curie-Weiss Ising model (v = 1) is qualitatively
different from all the models with v > 1. This is
because for all v > 1 the implicit absolute value of
the spin is infinite.

A general feature of all mean field models is the zero
specific heat for T > T, (in the case B = 0). This
“insensitiveness” of the specific heat to the dimen-
sionality of the spin is a general consequence of the
Gaussian form [ Eq. (10)] of the limiting probability
distribution. This, in turn, is due to the Markovian
nature of the random walk problem. An additional
observation consequent on this is the following. Any
random walk with finite correlations is still asympto-
tically Gaussian.1l It seems clear that any modifica-
tion of the Hamiltonian which generates by perturba-
tion theory a modified walk with finite correlations
will lead to a partition function with the same struc-
ture as the unperturbed case (for example, a jump
discontinuity in the specific heat).

The relationship between the partition function and a
particular kind of random walk, namely the Pearson
walk, is explicitly displayed in this problem. Recently,
in a series of papers, Domb11.12 has noted the close
relationship between dominant terms in the coeffici-
ents in high temperature series expansions for the
spin-1 Ising model, classical planar model and classi-
cal Heisenberg model and the geometrical properties
of self-avoiding walks on the given lattice. It may
then prove instructive to study the form of Eq. (11)
for the partition function, where P, (S) now represents
the distribution for a random walk other than the
Pearson walk., The only self-avoiding walk problem
that has been exactly solved is the so-called “Man-
hattan walk” of Kasteleyn!3 and we can take P, (S)
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for this walk and then evaluate Q. In this case, the
presence of infinite range correlations between the
walks means that the problem is no longer Markovian,
and so the limiting distribution is no longer Gaussian
and we expect qualitatively different thermodynamic
behavior for this model. Alternatively we can take

P, (S) for a walk on a defective lattice and investigate
how defects alter the nature of the phase transition.
Clearly, however, the Hamiltonian corresponding to
the partition function represented by the integral in
Eg. (11) must be discerned if we are to attach physical
significance to such studies.
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APPENDIX A:
SIONS

We want to integrate over the angular coordinates
in the integral

POLAR INTEGRATIONS IN v-DIMEN-

1= [ r@as, (A1)
where S = (S4, S, -..,S,) is a v-vector. To do this,
we write
= [fas(] js)as) (A2)
s =ligl|
and note that
L, f®as = [ o(s — Ishs@as (43)
= 25" 5(s2 — S12) £ (S)as. (A4)

Now we introduce the delta function integral repre-
sentation,

ioo
8{x) = Zm _iwe zxdz, (AD)
and find on interchanging orders of integration
8)dS = 25 e=s? CPP
[ f®s = 2550 [ e ([T ris,
Xe”z(sl«»--.-rf;‘y)dsl...dsy>’ (AG)

where € > 0 is chosen so that the line Rez = € is to
the right of all singularities of the integrand.

In the paper we have to evaluate (A1) with f(S)

= g(s)eK*S. The inner integrals in Eq. (A6) are then
easily performed and we find

[ f(s)as
2 [ e

S=ish
(AT)
€+300 . o v
= 228V 1g(5)2mf i e ? &z [v/2-11- 1,

= 25g(S)

&S) (A8)
= 2qv/2§v- _"iﬁ____

= In/isg (S)( LKS)W2-1 (A9)
Finally,

* K- = 2792 [TSv- _”LZ.L(..._)

f_weK Sg(8)dS = 27 /Zf Sv-lg(s )( L) o ~ds.  (A10)
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APPENDIX B: THE SPHERICAL MODEL WITH
MEAN FIELD

The Curie-~Weiss spherical model has the Hamiltonian

Hy=— % 2 S;S; —_%BES,, (B1)
1Zi<jsN
where the S; are constrained by ;i ,S? = N, so that
Eq. (B1) can be written
JIE )2 N
Hy=J— —(Es,.) — B2, (B2)
N\iz1 i1

The partition function is given by

e K. [N N
QKL Ky) = Zte ™ f Z f exp[—NlCZ_)lSz) 2 4 Kzas‘]
e _ _

2:82=N
i=1* X dS; ... dSy, (B3)
where
Zy= 2aN2NW-D/2/T(N/2) (B4)

is the surface area of the v-ball. This partition
function has been evaluated by Baker14 and by
Thompson and Lieb!5 but we re-evaluate it here by
explicitly displaying the random walk underlymg(BS)
Since the integrand is a function of § = Z} .1S; only,
Q Ny, Ky) = e—Klf R (S)Q(K‘/N)S "F2%gs, (B5)
where P\(S)dS is the probability that 208¢c 65,8+

+ dS) given 23} ;S2 = N. Clearly

= [o..f as;...dS,
N N

2825 LSP=N
=1 i=1

P(S) (B6)

If we make an orthogonal change of variables to ¥,
Yy,..., Yy with
N
Y, = N_l/zz}si ’
i=1

we find very simply that
T (N/2)

) _ § (§-3)72
PN(S) *N\GI-F((N_ 1)/2)( I:N] ) , for |S] < N,
_o, for |S| > N,
(B7)

provided N = 3. We can easily show that

P(S) ~ (1/V2aN)e-5?/2N,  ag N-> «, (B8)
provided |S| <N. We find

- ] 1
QN(K:U Kz) ~e Ky I'(N/2) f NG(x)dx (B9)

VaT((N — 1)/2) -1

G(x) = 3 log(l — x2) + K;x2 + Kyx.

(B9) is easily evaluated by the method of steepest
descents:

Qu(Ky, Ky) ~ e FU TN/ NTI(WN — 1)/2))eV 649,
(B10)
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where x_ satisfies the cubic equation
2K.x3 + K,x2— 2K, — 1)x, — K, = 0. (B11)

For B =0, K, = 0 and we obtain the simpler equation

2Kx3 — (2K —1)x, =0 (B12)
so that
x, =0, orx,=V1—K,//K=V1—-T/T,

where K, = 3, T, = 2J/k. Since x, = <(Z){ils,.)/N> the
magnetization per spin is given by
M = ’J'Oxs' (B13)

For B = 0, the thermodynamic functions are easily
evaluated and we find

— By =— 3log(K/K,) + (K—K,), K>K_,

=0, K<K,

U=—J1—K/K,), K>K,

=0, K<K,

C, = k/2, K> K,
=0, K<K,  (Bl4)

For T> T,and B =0, x, = 0 and from Eq. (B11)
we have

— (2K, — Dx, — K, =0
so that
xg = poB/R(T— T,)
and the susceptibility yx is given by
x = Nug/k(T — T,), (B15)
where T, is the critical temperature in zero field.
Thus the Curie-Weiss spherical model also obeys the

Curie-Weiss law.

APPENDIX C: THE LIMIT v — (B = 0)
By Eq. (35)

— BY/v = (1/v) logT(v/2) + G(x,), (1)

where

Glx,) =— Kx2 + (1/v) loglls,_,(2vKx,)/(vKx )¥/271].
(C2)

Then using Stirling's approximation and the asymp-
totic expansion of the Bessel function of large order
and large argument, 16 we find

— BY/v~ —Kx2 — § + 3 1og2 + 3(V1 + 16K2x2

—log(1 + V1 + 16K2x2)), asv—> . (C3)

x¢ is given by 3G /ox, = (3/2x,}(— By /v) = 0, and we
find from Eq. (C3)
xg ~ 4Kx /1 + V1 + 16K2x2,

as v - o, (C4)

which reduces to x, = 0,0r x, =v1— K /K, the same

as Eq. (B12) in the Appendix B. Finally, substituting
V1—K, /K for x in Eq. (C8),we find

— Byl ~ — ;log(K/K ) + (K— K_),
~ 0,

K> K,
K< K,, (C5)

which is — gy for the Curie~Weiss spherical model
[Eq. (B14)]. This completes the proof that, for B = 0,
we recover the spherical model in the limit v = .

APPENDIX D: EXPANSIONS ABOUT T =0 AND
T=T,

The transcendental equation satisfied by x, for B = 0
is

xs = Iy/2(2 VKXS)/IV/2_1(2 VKXS). (Dl)

For T& T,, x, =0 and we use the Bessel function
expansion for small argument

2 _(5z)2nre

L&) =2 st v a)T

so that

(D2)

L) [E)¥/al]l + (32)2/(1 +a) + -]
1.1 [G2)eVia— DL+ (2)2/a + -]

= (z/2a)[1 + (32)2/(1 + @) + -]

X [1— (32)2/a ++--]
=(z2/20)[1 - (32)2/a(l + @) + - -+ ]; (D3)
and so around 7, Eq. (D1) reduces to

2vKx, < (3+2vKx,)2 )
X =g\ (AR

and we find

xg V@ + v)/v]( — T/T,). (D4)
For T =0, K > 1 and we use the Bessel function
expansion for large argument,

e? 2 12y, -
Iu/z(z) ~ WFZ%)L(: De(— )

o]
+ i—(v+1)e—222 L(nv+2)-z—n} , (Ds)

n=0

where the coefficients L{» are defined by means of
the recursion relation:

(v—2)2—(2n—1)
8n

2
Ly = LY, IP=1

The second series in Eq. (D5) is necessary for the
v=1and v = 3 cases as then L{» = 0 for n > 0.

For v = 1 we find

14

I10(2)/1 1 /9(2) ~ (1 — e22)/(1 + e722)

1— 2e22,

[

(D6)
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and so Eq. (D1) around T = 0 reduces to

X, =1 — 2074 K%
> 1 2¢4K (D7)

since x, = 1 for T =0.

For v > 1 we find
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Lyg(2) 1— LE*2)/z + -emem
Lyp1(2) 1— L¢Pz + ——oe
L At

z
v—1 1
(this result also holds for v = 3). Around T = 0, Eq.

(D1) reduces to

¥, 21— [(v—1)/v(1/4K). (D9)
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Exact and Simultaneous Measurements
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(Received 1 November 1971)

The observables which can be determined through their states of exact measurement are characterized, and
a criterion for the set of states in which two observables are both measured exactly is established so that the

two observables will be compatible.

INTRODUCTION

An interesting and, one might perhaps venture to say,
important problem concerning observables is the
following: How many measurements are required to
determine a given observable #, and of what kind ?
The term “measurement” is taken here in a rather
weak sense; we simply mean a process of obtaining
the expectation value of # in some state . In a
strong sense a measurement could be considered as
a process of determining the probability distribution
P of u in the state m. In this latter sense it is
well known that if we measure « in every state, then
u is completely known. The problem of determining
u through “weak measurements” has not been solved
yet; Gudder! has obtained partial results of impor-
tance, which we discuss in Sec.2. There are, however,
certain states for which “ weak” and “strong” mea-
surements cannot be distinguished—those in which
is measured exactly—because, then, the probability
distribution p, , is just the Dirac measure at the
expectation value of the observable. Naturally one

is immediately confronted with the difficulty that no
such state may exist for a particular «, so that cer-
tain restrictions on # are in order. These, and how
to decide on the validity of the required conditions,
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are the content of the first part of the present paper
(Theorems 1 and 2).

In the second part the question of simultaneous mea-
surements is studied in the same spirit. Physically,
two observables u,v are simultaneously measurable
if somehow their values can be obtained through a
single measurement in so many states that no other
measurements are required. This seems to suggest
that the two observables «,v are so closely related
to a third one, say w, that it suffices to measure w in
order to obtain the values of #,v. In the current
abstract mathematical model we shall be studying,
the formulation is very different, but equivalent
logically to the above result,i.e., that #,v are simul-
taneously measurable iff they are functions of some
w. This is done, however, without reference to mea-
surements. It is this connection to measurements
which we study in the second part (Theorems 3 and 4).

1. PRELIMINARIES

The set £ of all events is assumed to have the follow-
ing structure:

(i) A partial order = ;there exist 0,] € £ with
O0=A=sIforall Ac L.

(ii) A complementation ’; we have (A’)’ = A for all
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and so Eq. (D1) around T = 0 reduces to

X, =1 — 2074 K%
> 1 2¢4K (D7)

since x, = 1 for T =0.

For v > 1 we find
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(this result also holds for v = 3). Around T = 0, Eq.

(D1) reduces to

¥, 21— [(v—1)/v(1/4K). (D9)
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The observables which can be determined through their states of exact measurement are characterized, and
a criterion for the set of states in which two observables are both measured exactly is established so that the

two observables will be compatible.

INTRODUCTION

An interesting and, one might perhaps venture to say,
important problem concerning observables is the
following: How many measurements are required to
determine a given observable #, and of what kind ?
The term “measurement” is taken here in a rather
weak sense; we simply mean a process of obtaining
the expectation value of # in some state . In a
strong sense a measurement could be considered as
a process of determining the probability distribution
P of u in the state m. In this latter sense it is
well known that if we measure « in every state, then
u is completely known. The problem of determining
u through “weak measurements” has not been solved
yet; Gudder! has obtained partial results of impor-
tance, which we discuss in Sec.2. There are, however,
certain states for which “ weak” and “strong” mea-
surements cannot be distinguished—those in which
is measured exactly—because, then, the probability
distribution p, , is just the Dirac measure at the
expectation value of the observable. Naturally one

is immediately confronted with the difficulty that no
such state may exist for a particular «, so that cer-
tain restrictions on # are in order. These, and how
to decide on the validity of the required conditions,
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are the content of the first part of the present paper
(Theorems 1 and 2).

In the second part the question of simultaneous mea-
surements is studied in the same spirit. Physically,
two observables u,v are simultaneously measurable
if somehow their values can be obtained through a
single measurement in so many states that no other
measurements are required. This seems to suggest
that the two observables «,v are so closely related
to a third one, say w, that it suffices to measure w in
order to obtain the values of #,v. In the current
abstract mathematical model we shall be studying,
the formulation is very different, but equivalent
logically to the above result,i.e., that #,v are simul-
taneously measurable iff they are functions of some
w. This is done, however, without reference to mea-
surements. It is this connection to measurements
which we study in the second part (Theorems 3 and 4).

1. PRELIMINARIES

The set £ of all events is assumed to have the follow-
ing structure:

(i) A partial order = ;there exist 0,] € £ with
O0=A=sIforall Ac L.

(ii) A complementation ’; we have (A’)’ = A for all
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A AZBif B"Z A0 =]andI’= 0. WithA,V
denoting infimum and supremum with respect to
=,wealsohave ANA' =0, AV A’'=

We shall say that A, B are disjoint (write AL B) iff
A = B’ or equivalently B = A’.

(iii) An operation 2;any sequence of pairwise dis-
]omt events A; € £ has a supremum 2J A, (4; + A,
+ -+ A, for a finite sequence).

(iv) Orthomodularity;if A = B,then B =A + (BAA'),
and we shall write B— A for BAA'.

(v) Separability; any set of nonzero disjoint events is
at most countable.

Two events A, B are said to commute f A =A; + C,
B =B, + C,where A, L B,.

A state is a map m: £ — interval [0, 1] such that for
any pairwise disjoint A; € £ we have m(23A;) =
2om(A;). Write M for the set of all states.

For most of our arguments we shall need the follow-
ing property of £ which we therefore assume:

(JPZ) £ is a lattice, and, if mA = mB = 1,then
m(A A B) =1 also.

Finally we assume that enough states exist.
(vi) For each A # 0 there exists a state m such that

m@A) =1.

An observable is a o-homomorphism of the Borel
sets on the line R into £, i.e.,2 map E — u(E) such
that u(¢) = 0, w(R) =1, w(E) = u(F) for E & F and
u(U E;) = 2 u(E;) provided that the E; are pairwise
disjoint. The range of an observable is always a
Boolean c-algebra with respect to the operations in
£. For any Borel function f the observable f(u) is
the map E — u(f~1E). The spectvum o(u) is the in-
tersection of all closed E such that #(R — E) = 0; the
pomt spectrum o ,(u) is the set of all A € R such that
u({@}) = 0. The observable « is bounded iff a(u) is
compact. The event A will be identified to the
observable

‘A f1€E 0dE
A’ HO0CE 1¢E
E\T if0cE 1cE"
0 #0¢E 1¢E

An observable is discvete if its range is an atomic
Boolean algebra;note that the atoms of the range
need not be atoms of £.

Two observables u,v are compatible iff for any Borel
sets E, F the events u(E), v(F) commute.

For any m € 9N, the measure p,, ,:E - m(u(E)) is
the probability distvibution of # in the state m; it is
always supported by o(#). The integral m (u) =

r Mb,, , () (whenever it exists) is the expeciation of
u in the state m . It is known that m (4) exists for all
states m iff # is bounded.2 The dispersion of # in the
state m is of course m (u2) — [m (u)]2, and  is
measured exactly in m iff its dispersion is zero,
which happens iff p is supported by a single point.

m,u
For the purposes of the present paper the term sub-
system will mean a subset of £ closed under the
operations ’,A,V and 2;.

We shall make use of certain well-known facts which
we summarize in the following proposition:

Proposition: The points » of 0,(«) and the atoms
A of the range of 4 are in a one-to-one correspon-
dence given by A = «#({r}). Form € M, A = m (u),
and A = u({A} ) we have that « is measured exactly in
m iff A is an atom of the range of # and m(A) = 1,

2. EXACT MEASUREMENTS

It is convenient to have the terminology introduced
by the following definition:

Definition: The maximal obsevvation of an obser-
vable # is the pair consisting of the set I, of all
states in which # is measured exactly and the map
m — m(u) from I, to the reals.

Theorvem 1: An observable is completely deter-
mined by its maximal observation iff it is discrete.
More precisely: if # is discrete, then the range ® of
u consists of all events which are measured exactly
in each state in 9, and u(E) = sup {B ¢ & | m(B) = 1
for some m < M, for which m(u) ¢ E}. On the other
hand, if # is not dlscrete there exists a v # # such
that # and v have the same maximal observation.

Proof: Let & be the range of u and write
I =B,+ B_,where B, is the union of all atoms in &
[whlch are countably many by (v)] and B, = B/; note
that B, =u(0, (#)). To each atom B, of & there cor-
responds a un1que X; € 0, (u) such that B; = u( {)t,}
and we have that m C m, iff m(B,;) =1 for some i;
in such a case m (u) = A.

Now let v = 2JA; B, i.e., letv(E) = 25{B;| %, € E}
for each Borel set E it is clear that v = f(u) where
SO) = axs(), S being the point spectrum op(u). Let

a be any nonzero number and consider the observable
w=1v + alw—v) = gu), where g) = \[xsA) + a
xrM)], T = R — S. Setting (1/a)E = {xlax"ec E}, we
see that

¢ 1E
[o ()N EyU[(1/a)E — op(u)] if0¢ZE
[o (u) NEJU[(1/a)E — Up(u)] U[R—o@)]if0cE

so that w(E) = u(g"1(E)) = [B,N E]U[B_ N u((1/a)E)].
To find the atoms in the range of w, we consider the
case E = {)\0} then (1/a)E = {(l/a)A } so u((1/a)E)=
0 unless (1/a)r, € 0,(u);but in this case #((1/a)E) =
B, and thus w({ro}) = B, N u({)to}) Therefore,
w({)to}) # Olffu({)to} = 0 and are in all cases equal
This implies that 91, Emu, and, as for any m in this
set we have m (u) = m(v) =X, for some ¢, we obtain
the same maximal observation for # and w. However,
for B, # 0 we have w » u,because otherwise we
would have a{m (u) — m (v)) = 0 for all », which would
imply a = 0 contrary to the hypothesis. So we have
established that if » is uniquely determined by its
maximal observation, it has to be discrete.

We now assume that @ is atomic,i.e.,u = 2 );B;.

We shall show that & consists of those events which
are measured exactly in each of the states of 9,. To
this end we first note that if 0 << B< B, for some i,
then there is a state m & M, in which B is not mea-
sured exactly Let C = B; — B = 0 and consider [by
(vi)] states my,my in wh1ch B, C have value 1, respec-
tively. Let m = 3 (m1 + my); then m(B) = 3 since
my,(B) = 0,but m (B;) = 1 since m,(B;) = my(B;) = 1,
ie.,,me fmu.
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Consider an even B measured exactly in each state
m € N,. Suppose m(B) = 1;if m(B;) = 1 too, then by
(JPZ) we have m(B A B)) = 1, while if m(B) = 0 we
have m(B A B;) = 0. If m(B) = 0, we also have

m(B A B;) = 0. Thus B A B, is measured exactly in
each state of 91, and by our previous remark we
have that either B A B; = 0 or B A B; = B;; this last
will occur iff for some state m € 9, we have m (B)=
m(B;) = 1. Thus we see that B = B, for all those i
for which some state m € 0, exists such that

m(B) = m(B;) = 1. Now, if B; is such that for no state
m € M, we have m(B;) = m(B) = 1, there must exist
a state m € M, with m(Bj) = 1,m(B) = 0;then

m(B’) = 1,and we obtain B; = B’. So the atoms of &
fall in two classes: those = B and those = B’, which
implies at once that B is a union of atoms of & and
thus B e B.

So we have established that 91U, determines & and
hence its atoms B;; since A; = m(u) for those m € M,
for which m(B,) = 1, we have u(E) = Z}{Bi [x; € E} =
sup{Be @& | m(B) = 1 for some m € M, for which
m{u) € E}.

Theorem 2: The set of states in which # is mea-
sured exactly determines whether or not « is dis-
crete.

Proof: Consider the set of events which are mea-
sured exactly in every state m € JI[,. For each
m € M, we consider the set £ ={A € £|m(A4) = 1};
clearly £,, = 0 since A,, = uf{m(u)}) € £,. Given any
A € &£ ,werepeattheargument inthe proof of Theorem
ltoobtain A= A ,i.e. that A is the smallest ele-
ment of £, and hence determined by J,. On the
other hand, every atom of the range of # has the
form A, for suitable »2; thus # will be discrete iff
the union of all distinct 4, is 1.

Covollary: H mu) = m(v) and mu2) = m(?2) when-
ever one side of each equation is defined, and, if # or
v is discrete,then ¥ = v.

Remarks: As we have already mentioned, Gudder
has shown that in a quite full logic, if we have
m(u) = m(v) for all m € M, then u = v provided that
u or v is bounded and has countable spectrum. We
first note that this last requirement on # is more
than what his argument requires: in fact the theorem
holds for discrete observables, for which the spec-
trum can include a whole interval since it is the clo-
sure of the point spectrum [Lemma (3, 1) of Ref. 1].
The main theorem which implies the above is Theo-
rem 4.5 in Ref. 1, which does not require a countable
spectrum: I «,v are bounded,m(u) = m(v) for all
m € M, and X = supo(u), u = supo(v),then » = u and
u(?\;) = v(iu}}). From this Gudder easily obtains
u({ry) = v(ay) for all X € R, But this implies that «,
v have the same point spectrum S and that the atoms
in their respective ranges are the same events. Thus
u will be discrete iff v is, and in such a case we have
uE) = L{upHir e SnE} =@ HIr e SNE} =

v(E) for all E,i.e.,u =v.

So we have a stronger form of the corollary valid:
For u bounded and discrete the map m — m(u) deter-
mines # completely without knowledge of m(u?).

There seems, however,no way of deciding which are
the states in which we can measure # exactly, although
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they are determined. So there seems no way of de-
ducing Gudder's theorem from Theorems 1,2. Vice
versa, too; knowledge of a maximal observation does
not appear to allow us to determine the map m — ni(u)
on I, and thereby let us deduce theorem 1 from the
result of Gudder.

Finally let us note that the corollary is in one res-
pect more general than Gudder's theorem in that it
does not restrict the observables to be bounded; this
appears to be an essential restriction for the proof
of Theorem 4.5 in Ref. 1, so that no relaxation of
m(u2) = m(v2) seems apparent.

3. EXACT SIMULTANEOUS MEASUREMENTS

The proof of the next theorem is essentially contained
in Theorem 1,but we wish to state it separately be-
cause of its physical content.

Theorem 3: Let u be a discrete observable; then
v is a function of «# iff v is measured exactly in each
state in which u is.

Proof: I v = f(u), then m{v) = fRf()\)dpm,u(A) SO
that, the desired conclusion is immediate. So assume
now that v is measured exactly in each m € 3, s0
that the same holds for each v(E) in its range. Then
by the argument in the proof of Theorem 1 we have
v(E) in the range of u. But in general z is a function
of w iff the range of z is contained in the range of w
(see, e.g.,Ref. 3); thus v is a function of .

We shall now establish a criterion for compatibility
of two observables based on the supply of states in
which both are measured exactly. It is perhaps in-
teresting to note the similarity this condition bears
to the corresponding condition in the totally different
axiomatic scheme introduced by Segal.*

Definition: Let u,v be observables with ranges ®
and C, respectively; the subsystem genevated by u,v
is the smallest subsystem £(x,v) containing & U €.

Theovem 4: Let u,v be observables and
My =M, N IM,. I u,v are discrete and compatible,
then 9N, separate the elements of £(x,v). in the
sense that if A,B € £(u,v) and A =B, then m(4) =
m(B) for some m € M,. Conversely, if MM, separates
£(u,v), then # and v are compatible.

Proof: Assume u,v discrete and compatible; then
£(u,v) is the Boolean o-algebra having as atoms all
nonzero B; A C;, where {B;} and {C,} are the atoms of
(¢ and @, respectively. To see this, consider the set
D of all nonzero D;; = B; A C;, which are necessarily
in £(u,v) and note {hat they are pairwise disjoint;
further we have 2J; ,D;; = I since J;B; = 2,C; =1I and
the distributive laws hold by compatibility ofJ u,v (see
Ref. 3). For the same reason the set of all possible
suprema of subsets of D forms a Boolean o-algebra
contained in £(#,v), and hence has to coincide with
£{u,v); clearly then the D;; are the atoms of L(u,v).
By (JPZ) we see that the States in which all elements
of £(u,v) are measured exactly form 91 ,; on the other
hand, property (vi) guarantees that these states sepa-
rate the elements of £(u,v).

Conversely now, suppose that 9, separates the ele-
ments of £(u,v), and consider £, = EA e £|lm(A)=0
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or 1 for eachm € My} 2 B UC. Trivially £, is
closed under complements, disjoint unions and by
(JPZ) it is also closed under the lattice operations;
thus £, 2 £(x, v) so that all elements of £(«,v) are
measured exactly in each state of 9. The rest fol-
lows from the next theorem which is of interest in
itself.

Theorem 5: A subsystem £, of £ such that, for
some set M, of states, the following two conditions
hold, is a Boolean o-algebra:

(i) Every A € £, is measured exactly in each state
of Mgy;
(ii) the states in 9, separate the elements of £,.

Proof: Let h(A) ={m e 9, | m(A) = 1} for
A € &£,. Clearly A = B implies 2(A) < h(B) and

41

R(A’) = M, — h(A) (set difference). Also #(A A B) =
fm e Mylm(A A B) =1} S {m € Mylm(A) = 1 and
m(B) = 1} = k(A) N k(B); by (JPZ) the reverse also
holds: m € kh(A) 0 k(B) implies m(A) = m(B) = 1;
hence m(A A B) = 1,i.e.,m € k(A A B). So we have
R(A A B) = h(A) Nk(B). Now let #(A) & h(B),or

R(A) = h(A) Nh(B),i.e.,h(A) = k(A A B);then

m(A) = m(A A B) for all m € 9, since the values of
any m on any C in £, are 0 or 1, and, as 9l separates
the elements of £,,we have A = A A B,i.e.,,A= B.

We therefore have that % is one-to-one. Since % also
preserves pairwise disjoint unions and for A = B we
have k(A — B) = h(A) — h(B) (set difference), we see
that the range of 2 is a Boolean o-algebra of subsets
of 9M,,. But % is one-to-one and preserves all rele-
vant operations; hence £, is also a Boolean o-algebra.

S. P. Gudder, Pacific J. Math. 19, 81 (1966).
S.P.Gudder, Trans. Amer. Math. Soc. 119, 428 (1965).
A.Ramsey, J. Math. Mech. 15, 227 (1966).
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and Their Fields (University of Chicago Lecture Notes, 1955).
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1t is proved that the local Hamiltonians constructed for the two-dimensional Yukawa model by Glimm and Jaffe
have the same continuous spectrum as the free Hamiltonian. The proof depends on the construction of asympto-

tic creation and annihilation operators.

1. INTRODUCTION

The spatially cutoff Hamiltonian in the two-dimen-
sional Yukawa model is given formally by the expres-
sion

H(g) = Hy + A [ (W (0): 9(x)g(x)dx

— s om2 [ 1(x)2:9(x)2dx — E(g), (1)
where g € C® is assumed equal to one on a large set
and 5m2 and E(g) are the infinite renormalization
constants. Glimm and Jaffe have proved that H(g) can
be defined as a positive self-adjoint operator,! and
that it gives rise to locally correct dynamics.2 They
have also proved that H(g) has a vacuum state (g)
(known to be unique for small values of \), and that in
the spectral interval [0, min{mb, m,}) the spectrum is
pure discrete with finite multiplicity.! Here m, and
m, are the bare boson mass and bare fermion mass,
respectively. In this paper, we use estimates develop-
ed elsewhere3 to show that H(g) has the same con-
tinuous spectrum as H,, i.e., that [min{m,, mf},oo) -
spectrum H(g).

Such a spectrum has the following interpretation pro-
posed by Glimm and Jaffe in connection with the P(¢),
model.4 The states associated with the continuum are
those which at large times (in the Schrédinger picture)
represent free particles not in the region of inter-
action. The discrete spectrum corresponds to states
bound into the region of interaction (suppg), with re-
duced mass because of the interaction. One expects
that in the infinite volume limit g — 1, the density of
bound states becomes infinite giving rise to a new
continuum beginning at one of the physical masses.

We remark that the mathematical problem of con-
structing the theory in the infinite volume limit is
quite difficult and involves a change of Hilbert spaces.
The present results should be regarded as one step
toward the eventual study of the spectrum of a physi-
cal Hamiltonian with no cutoffs.

The method we use to obtain the continuum involves
the construction of asymptotic creation and annihila-
tion operators. We prove the existence of strong
limits of the form

Bf(f) = lim e il&)e ot p#( 1) Holpinl o)t

t— oo

(2)

where bf(f) = fbf(k)f(k)dk, f€ L2, is one of the stan-
dard creation or annihilation operators for bosons

(€ = 0), fermions (¢ = + 1), or antifermions (¢ = — 1),
Then by applying the asymptotic creation operators
B¥(f) to the vacuum, we build asymptotic states on
which H(g) acts like a free Hamiltonian. The first de-
tailed application of this method was given by Kato
and Mugibayashi.> Hgegh-Krohn developed and re-
fined the technique and gave a series of extensions to
more and more singular interactions, including the
local P(¢), Hamiltonian.678 The (¢%), Hamiltonian
was also studied independently by Kato and Mugibay-
ashi.?® The present paper marks the first application
to interactions with infinite renormalizations.

The Hamiltonian H(g) is constructed in Ref. 1 as the
limit of positive self-adjoint Hamiltonians

H(g7 K) = HO + HI.g,K + Cg,m

(3)
where H; . is an approximation to
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or 1 for eachm € My} 2 B UC. Trivially £, is
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(JPZ) it is also closed under the lattice operations;
thus £, 2 £(x, v) so that all elements of £(«,v) are
measured exactly in each state of 9. The rest fol-
lows from the next theorem which is of interest in
itself.

Theorem 5: A subsystem £, of £ such that, for
some set M, of states, the following two conditions
hold, is a Boolean o-algebra:

(i) Every A € £, is measured exactly in each state
of Mgy;
(ii) the states in 9, separate the elements of £,.

Proof: Let h(A) ={m e 9, | m(A) = 1} for
A € &£,. Clearly A = B implies 2(A) < h(B) and
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R(A’) = M, — h(A) (set difference). Also #(A A B) =
fm e Mylm(A A B) =1} S {m € Mylm(A) = 1 and
m(B) = 1} = k(A) N k(B); by (JPZ) the reverse also
holds: m € kh(A) 0 k(B) implies m(A) = m(B) = 1;
hence m(A A B) = 1,i.e.,m € k(A A B). So we have
R(A A B) = h(A) Nk(B). Now let #(A) & h(B),or

R(A) = h(A) Nh(B),i.e.,h(A) = k(A A B);then

m(A) = m(A A B) for all m € 9, since the values of
any m on any C in £, are 0 or 1, and, as 9l separates
the elements of £,,we have A = A A B,i.e.,,A= B.

We therefore have that % is one-to-one. Since % also
preserves pairwise disjoint unions and for A = B we
have k(A — B) = h(A) — h(B) (set difference), we see
that the range of 2 is a Boolean o-algebra of subsets
of 9M,,. But % is one-to-one and preserves all rele-
vant operations; hence £, is also a Boolean o-algebra.
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be defined as a positive self-adjoint operator,! and
that it gives rise to locally correct dynamics.2 They
have also proved that H(g) has a vacuum state (g)
(known to be unique for small values of \), and that in
the spectral interval [0, min{mb, m,}) the spectrum is
pure discrete with finite multiplicity.! Here m, and
m, are the bare boson mass and bare fermion mass,
respectively. In this paper, we use estimates develop-
ed elsewhere3 to show that H(g) has the same con-
tinuous spectrum as H,, i.e., that [min{m,, mf},oo) -
spectrum H(g).

Such a spectrum has the following interpretation pro-
posed by Glimm and Jaffe in connection with the P(¢),
model.4 The states associated with the continuum are
those which at large times (in the Schrédinger picture)
represent free particles not in the region of inter-
action. The discrete spectrum corresponds to states
bound into the region of interaction (suppg), with re-
duced mass because of the interaction. One expects
that in the infinite volume limit g — 1, the density of
bound states becomes infinite giving rise to a new
continuum beginning at one of the physical masses.

We remark that the mathematical problem of con-
structing the theory in the infinite volume limit is
quite difficult and involves a change of Hilbert spaces.
The present results should be regarded as one step
toward the eventual study of the spectrum of a physi-
cal Hamiltonian with no cutoffs.

The method we use to obtain the continuum involves
the construction of asymptotic creation and annihila-
tion operators. We prove the existence of strong
limits of the form

Bf(f) = lim e il&)e ot p#( 1) Holpinl o)t

t— oo

(2)

where bf(f) = fbf(k)f(k)dk, f€ L2, is one of the stan-
dard creation or annihilation operators for bosons

(€ = 0), fermions (¢ = + 1), or antifermions (¢ = — 1),
Then by applying the asymptotic creation operators
B¥(f) to the vacuum, we build asymptotic states on
which H(g) acts like a free Hamiltonian. The first de-
tailed application of this method was given by Kato
and Mugibayashi.> Hgegh-Krohn developed and re-
fined the technique and gave a series of extensions to
more and more singular interactions, including the
local P(¢), Hamiltonian.678 The (¢%), Hamiltonian
was also studied independently by Kato and Mugibay-
ashi.?® The present paper marks the first application
to interactions with infinite renormalizations.

The Hamiltonian H(g) is constructed in Ref. 1 as the
limit of positive self-adjoint Hamiltonians

H(g7 K) = HO + HI.g,K + Cg,m

(3)
where H; . is an approximation to
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in which a cutoff function has been added in momen-
tum space, and Cg has logarithmically divergent
renormalization constants dm2(k) and E(g, k). The
convergence is in the norm resolvent sense. For a
large class of cutoff functions

IR (&)

where R (%)

—RE®)I—0 ask—x, (4)

= [H(g,x) — €]t and R({) = [H(g) —C] .

We now detail the input to the proof that the ¢t >
limit exists. As we shall see, one needs information
about the operator R _X (k)R ,where

Xe (k) = [b(R), Hy , . + Cyil (5)
In Ref. 3 uniform bounds on R _X¢(2)R, || were obtain-
ed by explicitly carrying out the renormalization can-

cellations. It was proved that for any & > 0, there
exists a constant independent of « such that

1+8 €e=20

IR X¢(R)R, | = const t‘“m e=+1’ (6)
-(7/4)+6 €e=0

IR3 XE(RIREN = comst | -6/mve  e—zx1 (D

Here p = p(k) is either p, (k) =
e = (k2 + m}g)l/z.

The operators X¢(k) are sums of Wick monomials and
for € = £ 1, it is convenient to distinguish two types of
terms, Xg(k) = X¢*(R) + X&(k), according to whether
w(k) = (u, + k)1/2 or v(— k) appears in the kernel.
One case or the other always occurs, these factors
arising from the spinors

u(p) Z[V_(py)(_p):l and v(p) = [Vgp)p)} '

For example one can see how the separation takes
place in the following explicit expression for € = + 1,

(k2 + m2)1/2 or

XER) = A JF(R' + k + p)[— (47)71(2)71/2
X (e (R Vi (R AP )2 /2 (v(R)V(— P)
+ U= k)] x k', &, D)OG(R')
+bo(— kX (P)dR'dp + X [F (R + k +D)
X [— (4m)L@) 172k () (P)) /2
x ((R)V(D) + v(— k(= D) X (', B, DYO (')
bo(— k)b, (— p)dR'dp
where x, (&', k,p) is the cutoff function. Now define

g1 < e g, cZar ©
These operators have the uniform bounds
IR, g¢ *(R)R | = const p-@r2)es 9)
IR3 3o +(R)R3] = const p~(5/9)+s, (10)

These follow from (6) and (7) for € = 0. For € + 1,
slight modifications of the original proofs yield the
result. [Basically, the kernels of X¢*(€ = * 1) have
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factors v( k)u (k)"1/2 formerly bounded by a constant
which do not appear in get.]

We shall make explicit use of the localization of the
Hamiltonian. In terms of the g¢,this is reflected in
the fact that for a suitable choice of cutoff functions,
there exists an interval [~ M, M| containing supp g
such that the Fourier transform of {6, RK e (B)R, x)
vanishes outside [— M, M] for all x (x > 1) and all ¢, x.
(A possible choice is XK(k P1,Py) = T(k/x) (D1/K) X
B(by/ 1) with %(p) = H(— p), B(P) = P(—p), H(0) =
p(0) = 1, and the Fourier transforms 7, p in C .} The
demonstratlon of this fact was given explmltly for

€ = 0 in Ref. 3 (Proposition 7. 1), and the proof is
similar for € = + 1,

2, ASYMPTOTIC CREATION AND ANNIHILATION
OPERATORS

In obtaining the limit (2), we shall make use of some
of the standard estimation techniques which have been
developed for the two-dimensional field theories by
Glimm and Jaffe. A good general reference is Ref. 4.
In particular it is known that D(N1/2) D D(H1/2) and
IN1/2R1/2|| < const (“first-order estimate”). Also by
standard estimates, D(b (f)) 2 D(N1/2) and

6, (/) + 1)"V2| = const [ f|,,and similarly for

b*(f). Thus the expressions bf’t (f) given by

be,t(f) — e iHt be(e_i“étf)eim’

. ) X 11
b::t(f) —e thbt(emetf)eth ( )

are well-defined operators on D(Hl/z),and
1o ( fHwll = const [ £ll,ll (B + D172yl (12)

Theovem 1: For ¢ € D(H) and f< L2, the vectors
bft(f) Y have strong limits as ¢ - o,

Remark: We could equally well consider { » — .

Proof: Throughout the proof we suppress €. We
first consider the annihilation operators. Because the
estimate (12) is uniform in ¢, it is sufficient to con-
sider ¥ in a core for H,say C®(H),and f in a dense
set in L2, say C7’, and vanishing in a neighborhood of
the origin, called D.

We approximate b,(f) by b;,.(f) by replacing Hby H, .
We also approximate our vector Y € C*(H), which we
may take to have the form ¥ = R(£)*6 with { < 0 and
some 7 large, by a vector ¥, =R, ()"6 in C*H,)C

D, (f)). The strategy of the proof is the following.
We first show

o)W Ayl -0 ask-—©. (13)
Then we show

I, () =By (N> 0 asti’— «. (14)

uniformly in k. By an €/3 argument, these imply
I ®Lf) — b, (Nl — 0as it — .

For (13) we make the expansion
N6 — by o (SWN

= ” 5( -1,Ht)b(e in f)RneLHtGH
+ ” e ~iH tb(e zptf)ﬁRRn -1 theH
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+ ” e“iHKtb( "iutf)R 6( ﬂ'l)eiﬂtgn
+ ” e-th ( zptf)R 5( th)9|I , (15)
where 6(¢ %) = ¢7#! _ g7 etc. The third term

converges by resolvent convergence

lb(e-uf)(N + 1)"1/2|| < const ||f |5, and the uniform
estimate || (N +1)1/2R}/2 |l< const. Resolvent conver-
gence also implies that e “Ht converges strongly to
et , 80 that the first and fourth terms in (15) con-
verge. The convergence of the second term follows

similarly, using

IN12(R, —R)| » 0 as«— o, (16)
which we establish in a lemma at the end of this sec-

tion. This completes the proof of (13).

For (14) instead of proving strong convergence direct-
ly, it is sufficient to prove uniform weak convergence
on a dense set in the unit ball. Suppose for every

6 > 0 there exists a T such that if ¢, ' > T,then

KX, @, (f) = by (NI =1 x ]I 6 (17)
for all x € C™(H,). By the Riesz representation
theorem we have for £, > T,

(6, () — by, LY =< 6. (18)

If (17) is true for all «, then so is (18) which gives the
uniformity in «.

Recalling that y;,
study are

= R, (£)"0, the functions we want to

G bs, () = (e, be™ R, () ™ 0).
Using the standard number operator estimates and
the first order estimate, it is relatively straight-
forward to show that these are differentiable func-
tions of s, and integrating the derivatives gives (V, =
HI,K + CK)

<X1 (bt,x(f) - ?tl'K(f))wK>
= [i4e"x, [iV,, blemissf)|R (0)7 eifics6)ds. (19)

We must. Iestimate the right-hand side of this equation.
We let e** > ¢* *(no change) and note that

el ~8s y = _ j(d/ds)ei VSR, (£)x. Then integrating
by parts we see that the right-hand side of (19) is
equal to

- zft' (elHS C)X’ [iVK ’ b(‘_ i”'e_iusf)]R ({)netﬂse>ds

- zj,,<e”“ R (O)X, [iV,, b(e ™ *N R (0)" e *)ds

+ 1e"R (©)x, [V be™ )R (€) e )|

(20)

This step is justified by snowing that the various de-
rivatives exist in the proper topologies and we omit
the elementary details. The effect of this manipula-
tion is to add a factor R, ({) on x. For the first two
terms in (20) we follow the same procedure and
obtain two more factors of the resolvent on x and
more surface terms. Altogether we obtain eight inte-
grated terms of the form (up to a constant)

Jike e, RV, b(e )R e 9" )ds, (21)

479

wheref = uif, 3=10,1,2,0r 3,lies in D, and §' =
REg for some k. (We assume n = 6), Then there are
seven surface terms of the form

(e R [V, b(e ™) |R e 0 111, 22)

where x' = Rf(x, 1=0,1,2.

The terms (21) have the form jf,A(s)ds. We obtain
the convergence required by (17) by showing that for
any integer m,there exists a constant independent of
K such that

A(S)| = const || xIl | sf-m (23)
To this end we note that the integrand A(s) can be
written as
A(s) = [e ke ™y, REX, (k) REe 0" )ak
= Jé "Z”S(Ef,t(k)y*(k))dk, (24)
where )
yt(k) — (elHK R 8 ( ) 3 lHKSB >
L ubl/zf,l (&), €=0
fi(R) =% e . (25)
us ) 2, (), e=1

As mentioned previously, with the proper choice of
cutoff functions, the support of y*(x) = (2n)71/2 fe ikx %
y*(k)dk is contained in an interval [— M, M] for all

K, S. Then y*(R) is infinitely differentiable and using
the K, s uniform bound |||, = lly[l; = const| x|
wh1ch follows from (10), we obtain the k, s uniform
bound

| ix)ry (x)dx |

(26)

d yi(R)| = (27) 1/2]f emikx(—

< const M7*1|| p=[|

A

const || x|.

Furthermore f: € Dy, is infinitely differentiable, and
all its derivatives are in D,. Now in (24) we write

e—ius — s—m<i_“_ _d_> me-ips
k dk

and integrate by parts m times. This is justified
since the integrands always have compact support
away from the origin. This gives the factor | s|-™, and
since in (26) we have the necessary uniform bounds
on the derivatives, we obtain (23).

Now consider the surface terms (22). These are the
difference of terms of the form

Je T (e, R X ()R e 00dk = B (1), 1),
E

(27)
where ff € 8 (Schwartz space) is as before and

Bi(h, t) = [e M h(R)* (R, t)dk,

Mk, t) = (e R JL(R)R e (28)

LG,

All these terms converge to zero with the proper
uniformity. In fact we show that for all 4 € 3,

[ B+(h,t)| = 0 as ¢ =  uniformly in « and x on the
unit ball. Using || x’ | = const || xl| and (9), we have
the «, # uniform bound
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IB+(h, )] U x2(, 0l Nl 21l =<
Since the L1 norm is a Schwartz norm, this shows
that it is sufficient to prove convergence for % ina
dense set in 8 in the $ topology. We choose the set
of all § functions whose Fourier transforms are Cg.
We now write

const | 2], x)l.  (29)

IB(h, ) = | [ ok, t)74(k, H)dk]
= Ifox £+ (— x, t)dx |
= lo¢, ol 7=, 04, (30)

where for some large integer 7,

o(k, t) = e-inty 27,

31
T:(k,t) = p27h(R)A*k,¢). (31)
Since ke 8, | 7t(, Ol = I (-, H)ll; = const | x|l
Furthermore
Fe(x, 1) = (20172 f ((— & + m2)7h) (x — A+ (v, B)dy

(32)
vanishes outside an interval independent of k and ¢
since both (— A + mz)rh and %t do. Therefore we ob-
tain the «, ¢ uniform bound

Il 7=, Ol = const [ T+(- ,H) _ = const || xI|. (33)

o0
Finally 6(x, ¢) = (2n)‘1/2feik’°‘i#tu 27 ig a smooth
solution of the Klein-Gordon equation and has the
standard rate of decrease in two dimensions,

o = const |¢]71/2, (34)

See Jost10 or S.Nelson.11 Thus combining (30), (33),
and (34) we have for a constant independent of «,

|Bs(h, )] = const | x|l 1t]'12, kecg.  (35)
Thus the surface terms (22) converge to zero and
(17) is proved.

This completes the proof of the theorem for the an-
nihilation operators. For the creation operators we
make the replacements e~i#tt — ¢int apd X — X*.
Neither of these makes any substantial difference
and the whole proof goes through as before.

We now give the proof of (16).
Lemma: As k - o, |[N1/2(R_— R)| - 0.

Proof We introduce the operator PJ =
(1 + j7IN)™, which satisfies | N7P,| = j7(0 = r = 1).
Since || N1/2P, MR, —R)I> 0as « Lo by resolvent
convergence we need only show that as j = o,
N1/2p, R_converges to N1 /2R uniformly in « for
K =< 0, Th1s follows from the uniform quadratic esti-
mate proved in Ref. 3 which says | NR, [ =< const
(k = 9. Thus as j = o,

IN1/2(1 — P,)R,|| = I N1/2P,NR |
< const j1/2

- 0.

We remark that the same proof gives that
| NY2(R—~ R)||= 0 as k = », provided that 7 < 3
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Here N, =25, [ ()7, (k)*b,_(k)dk. A similar proof
extends the result to 7 <1 (A.Jaffe, private communi-
cation),

3. SPECTRUM OF THE HAMILTONIAN

By Theorem 1 we may define operators g, () and
BE(f) on D(H) by

B = 1imbf )y, (36)
We now establish properties of these operators.

Proposition 1: For ¥, ¢ € D(H),{B} (), ¢) =
(¥, B.(f)g) and thus B¥(f) C B.(f)* and B,(f) T BX(HH*

Proof: For finite ¢ we have
(b ;:(e P etf' )6 thl,l/,e i!{t(P> - (eiﬂtw, bé(e—ipetf)eth(p>.
Letting ¢ —» o, we obtain the result.

Proposition 2: On D(H) X D(H), the canonical
(anti) commutation relations hold, that is,

[ﬁo(f), Bg(g)] = <f’ g>L2’
{Bt 1(f)y B):l(g)} = <]7,g>L2;

with all other canonical (anti) commutators equal to
Zero.

@37)

Proof: This follows from the strong convergence
and the corresponding relations at finite .

Proposition 3: The asymptotic operators B#( f)
have the same commutation relations with H as the
% (f) do with H0 In particular on D(#H), for all f€ L2

1Hs ~ij
B(f) —ﬁ(e *er),
e 15g*( )¢ e = p¥(eMep). (38)
Also for f € 8 we have on D(H) X D(H),
H = —
[H, B()] = B~ m.f), (39)

[, BL(N] = BE(pS)-
Proof: For finite ¢ we have the operator identity
on D(H):

eiHsbejt(f)e—iHs _ b6 s (e—ipesf) ,

e DT (e = b*  (e¥).

As t — « we obtain (38). Differentiating (38) on
D(H) X D(H) and setting s = 0 gives (39).

Proposition 4: If 6 is an eigenstate of H, then
B.(f)0 = 0for all fe L2 and all e.

Proof: First consider vectors in the Fock space
with a finite number of particles and whose wave-
functions in the n—particle subspaces are of the form
h,®* - -®h, (symmetrized or antisymmetrized), with
h, € 8. For any such vector ¢ and any f €8,

lb (e ™l >0 ast—w, (40)
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for if one writes out this norm explicitly, one finds
that all terms are proportional to something of the
form

| f e #r (R, (R)dR |,

which goes to zero as t — «, as can be seen using (34).

Finite combinations of these vectors form a dense set
of vectors satisfying (40). This domain is a core for
(N + 1)1/2 3nd since we have the { uniform bound

I3, (e ™)l = const || Al Il V + 1)*2yl,

we can extend (40) to ally € D((N + 1)172), fe L,.
Now suppose 0 is an eigenstate of H, ei#!§ = eifig,
Then since D(H) C D((N + 1)1/2),

” e—thbe(e—ipetf)ethe” - ” be(e-iuetf)en_) 0 ast— w; )

(41
but the left-hand side of (41) converges to || B.( /)6l ,
hence B.(f)6 = 0,

Proposition 5: If 8 is an eigenstate of H,then

I8xrel =1 £l el

Proof: This follows from Propositions 2 and 4.
We now can prove the main result.

Theorem 2: [min{m,, m }, ©) C spectrum H.

Proof: We must show that for any X in this inter-
val and any § > 0, there exists a ¥ € D(H), such that
I(H— )l = 6llyll. To find such a ¥, consider vec-
tors of the form B¥(f)Q with f € C and @ a vacuum
for H,i.e., HQ = 0, 9] = 1. For x € D(H), we have
by Proposition 3, (Hy, B 1)) = {x, B f)N). Thus
BX(f)Q € D(H) and

HBX )R = BXu 0. (42)

Now take € corresponding to the smaller mass, and

narrow support for f so that if k € supp f, |p, — A |
< 6. Then using Proposition 5, we have

IE—=08:NRN = [ 8¥(1, — ) )2l

=l (pe =S,
= 8l 7l
= 6] gE(f)wl, (43)

which proves the theorem.

We conclude with some general remarks. We have
obtained one particle asymptotic states by applying
the B%(f) to the vacuum. Similarly, one might
generate n-particle states by applying operators of
the form B%,(f;) - Bf_n(fn) to the vacuum.' Summing
the n-particle subspaces gives an asymptotic Fock
space Fout. Such a construction has been outlined by
Hgegh~Krohn78 for other models. One finds that the
Hamiltonian acts on J_,, like a free Hamiltonian,
schematically H = Z}Ju ()R (k)8 (k)dE, just as we
have shown for the oné-particle states in (42). Using
operators defined as limits of the b*,(f) as 1 > — ,
one might also obtain another Fock space Fin. Scalar
products of states in &, with states in &,,; would
give an S matrix S (g). Such a construction is of limit-
ed interest at this time, since the physical S matrix
has to be constructed after taking the limit g = 1,and
it is not clear in what sense (if any) S(g) might con-
verge to S. Working in the infinite volume limit, one
could hope to obtain an S matrix using the Haag~-
Ruelle collision theory. This theory depends on a
detailed knowledge of the spectrum of the Hamilton-
ian. In this sense the present results are a step to-
ward the construction of a physical S matrix.
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On the Mathematical Theory of Electromagnetic Radiation from Flanged Waveguides
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A mathematical technique particularly suited to describing the electromagnetic radiation from open-ended
waveguide structures is discussed. As an example of the utility of the method, the exact solutions, for both
wave polarizations corresponding to a uniform line source embedded in a dielectric filled slot in a ground
plane, are given. The edge condition is used to estimate and partially correct for the truncation error resulting
from approximating the infinite system of linear equations by a finite one. The truncation corrected field ex-
pressions are shown to recover the proper local field behavior in the vicinity of the aperture perimeter. Some
numerical results, for both aperture and radiation fields are given and in the latter case compared with the

Kirchhoff approximation to the radiation field.

1., INTRODUCTION

The rather straightforwardbut sometimes mathemati-
cally poorly conditioned method of mode matching as
discussed, for example, by Wexler! and more recently
by Masterman and Clarricoats2 has in the past been
applied to a variety of electromagnetic boundary
value problems arising from mathematical analyses
of waveguide configurations in which severe or
abrupt discontinuities exist in the waveguide walls.3
We shall consider an important type of discontinuity,
the termination of a guide or cavity in an open ended
flange plane.

The method to be used complements solutions obtain-
ed by Weinstein,4 who used the Wiener—Hopf tech-
nigue to treat unflanged cases. Mittra and Lee® have
discussed the relationship between the Wiener-Hopf
and mode matching technique as well as giving much
of the formal theory for both. The solutions should
also establish greater confidence in the application
of the geometrical theory of diffraction to narrow
waveguide radiators.® The analysis is in many res-
pects a generalization of the work of Nussenzveig.?

The method to be used to partially correct for trunca-
tion error8 is an adaptation of “the mixed method”
employed by Do Amaral and Bautista Vidal,? who
treated the intermediate region case 0,1 <kya < 1.7,
where 2a is the width of the guide and %, is the wave-
number.

Although the numerical results we present refer to a
situation different in two respects from Nussenz-
veig's work, our theory in contrast is developed for
both wave polarizations and also admits the possibili-
ties of a finite depth well which is filled with a uni-
form lossy medium.

In order to incorporate the truncation correction, the
infinite system of linear equations is transformed
into an equivalent infinite set for which the algebraic
dependence of the amplitudes as a function of mode
index is known asymptotically. This information,
which is related to the edge condition, is used to con-
sider the truncation error.

The matrix elements of the scatter matrix'0 for
either polarization are shown to reduce to a canoni-
cal integral which is proportional to a finite sine or
cosine transform of the Hankel function of order
zero. An asymptotic series for the canonical integral
is obtained. This series, coupled with the fact that
the scatter matrix is nearly diagonal dominant'! and
extremely well conditioned, makes it numerically
possible, although as shown not necessary,to solve
the resulting system of equations for orders in
excess of fifty.

The paper is organized into three sections. In Sec. 2
the formal exact solution for the simplest nontrivial
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problem in the class of flanged waveguide cavities is
obtained. Then the resulting matrix equations are
formulated in an equivalent set for the aperture am-
plitudes. To implement the solution of the infinite
system, an analysis of the matrix elements is made.
The symmetry of the scatter matrix is exploited to
generate a matrix of order N with 2N-1 canonical
integrals. In general these integrals must be evalua-
ted numerically. To facilitate computation, a series
which is asymptotic in mode index is obtained for
the canonical integral. Section 2 concludes with the
determination of the asymptotic evaluation of the
aperture amplitudes for large mode index.

The third and final section deals with the formulation
of the truncation corrected equations, the truncation
error estimate, and some graphical results for the
radiation and aperture fields. A comparison of the
resulting radiation fields with the Kirchhoff predic-
ted fields shows good agreement except near reso-
nance and in low elevation angle regions.

2. THE FORMULATION: THE DISCRETE AND
CONTINUOUS WAVE REPRESENTATIONS

In this section we will obtain the formal solution in
all space, and for both wave polarizations, to the
electromagnetic fields in a parallel plate flanged
slot geometry depicted in Fig 1.

A uniform electric or magnetic line source is loca-
ted a distance % below the slot aperture, and for sim-
plicity is located in the central (y, z) plane midway
between the vertical walls. A Cartesian coordinate
system is defined such that the plane z = 0 corres-
ponds to the flange interface. The positive z direc-
tion is normal and points outward from the flange.
The x coordinate is measured positive to the right
from the origin contained in the intersection of the
interface and central plane. The y axis, which points
into the paper, completes the right-handed triad (x,
v, z). The slot half-width is denoted by a and the slot
depth by d. Because of symmetry, the fields are in-
dependent of the ¥ coordinate. Also,because of the
geometry, it can be shown that the problem is
scalar,12

For vertically polarized waves, the primitive field
guantity is the ¥ component of the magnetic intensity
ox,z) = Hy(x, z), which gives rise to TM waves
(transverse to z). Similarly, horizontally polarized
or TE waves are obtained by defining the field primi-
tive to be ¢(x,2) = Ey(x, z). The time harmonic fac-
tor is taken to be e~t¥f and the free space wavenum-
ber (for z > 0) is k, = 2n/wavelength. The cavity
region(— # <z <0 and x| < q) is filled with a uniform
and in general lossy dielectric specified by a dielec~
tric constant € and a conductivity 6. Thus the wave-
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number k, for the interior region is given by #; =
ko(€/€ + io/wey)t/2. Notice that the units are MKS
and the permeability is taken to be pg, in all regions.

In the interior region, we thus seek a solution to
Maxwell's equations ¢, which satisfies the wave
equation

(V24 k)@ (v, 2) = — 0z + h)d(x), 2.1)
where 0 is the Dirac delta function. Before we dis-
cuss the wave representations, let us consider the
source term in (2. 1). In the absence of any boun-
daries, the solution to (2. 1) which corresponds to a
diverging cylinder wave is given by

o(x,2) = 3HM (R [(2 + 1)2 + x2]1/2),

where H§l) is the zeroth-order Hankel function of the
first kind. Although the general solution to (2.1) is
the polarization dependent Green's function for this
particular geometry, it is important to also note the
close relation of the right-hand side of (2.1)to a
uniform distribution of Hertzian vertical dipoles for
TM waves and Hertzian horizontal dipoles in the TE
case. For the latter, the interpretation is fairly
obvious. The relation of the TM magnetic line cur-
rent and an equivalent uniform vertical dipole den-
sity has been discussed by Wait.13

A discrete spectrum, that is, a modal series, is suit-
able for the representation of ¢;,;. In order that the
source condition (2. 1) be satisfied, it is convenient
to give a piecewise definition of ¢,

0
- i
Ot = 2 B,(e™Vn* + T e 17n%) cosk B,x

n=0
forz>—h (2.2a)
o0 ) i
Ot = Z’\O An(e—zk17n2 + l_‘nelkly’lz) COSklﬁnx
”=
forz<—n (2.2b)

wheren =0,1,2,***and A,,B,,T,,T,, y,, B, are as
yet unspecified constants. For (2. 2) to satisfy (2.1)
in its homogeneous form, we must have

B2 + 42 =1. (2.3)

The perfectly conducting walls at x = + a impose the
conditions

VELl _ g

')E 5 = for ;TM waves.
y

TE
These conditions are satisfied by defining 8, to be

(2. 4)
(2.5)

Snﬂ/(kla) TM waves

P =1(n + 1)n/(2ka) TE waves
At the possible risk of slight confusion, unless other-
wise stated, the symbol g, will be used for either
polarization. Note that y, is now defined to within a
sign. The sign is chosen by requiring the waves to
decay as they move away from the source. Thus

y, = (1 — p2)1/2, (2. 6)

Similar to the determination of the j,'s, the perfectly

Im(y,) = 0.

conducting floor of the slot (z = — d) leads directly
to the expression for T',:

. ™
T, =+ e2tkiynd  for (TE) waves. (2.7
In the following we will use the elementary orthogo-
nality condition
f_aa coskB,x cosk B, x dx = 26, a/¢,, (2.8)
where 6, is the Kronecker delta and ¢,, is the New-
mann factor defined by

{L,n=m {1, =0

& = ‘
““Zlom=1,23,--

2.9)

= ’
nm o0 = m

Two conditions, the continuity of the field in the plane
z = — h and that the derivative of ¢ . with respect
to z be discontinuous as dictated by the right-hand
side of (2. 1), lead to the following relation between
the unknowns B and T',:

B, = [(H2T, + 1)e,)/[4iy ke al,(1 — T,T,)], (2.10)
where €, is given by (2. 9) and H, is defined

H, = e itiynh, (2.11)
The coefficient f,, is, of course, a sum of reflection
coefficients of all modes into the nth mode. The
reflections arise because of the aperture discon-
tinuity, that is, the truncation of the waveguide. If
Im(y,koh) > 1,T, reduces to the reflection coef-
ficient of the nth mode into the most nearly resonant
mode, i.e., the mode which most and nearly satisfies
nt = Re(k,a).

In the external region (z > 0), it is convenient to
represent the primitive field ¢, (¥, z) as a continu-
ous spectrum of inhomogeneous plane waves:

o0

o) = Jg

where B(u) = (k2 — p2)1/2,

cospx e BWzgld(ydy, (2. 12)

Here the superscript is a polarization index where
(1) corresponds to TM and (2) to TE and g¢i)(y) is to
be determined. In order that the radiation condition
be fulfilled for z = + ©, the branch of the complex
square root is determined by the condition ImB(u) =
0. There are several reasons for the choice of the

4

/// 1/// (e, 09) //,;v]///;_’:/é;/
NS0 /
Y /

j I-_ 0—4
Uniform Line Source

FIG. 1., Two-dimensional geometry.
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representation (2.12). For one, it is symmetric in x,
and it is transformable in x over the infinite interval.
That is,

o 1
fo cosus cosp’'s ds = zmd(p —p')  for p,p > 0.
(2.13)
Furthermore, it is closely related to the plane wave
representation of the zeroth-order Hankel function.
This property will be exploited later on in the cal-
culation of the radiation pattern, and also in the sim-
plification of the matrix elements. It also satisfies
the wave equation in the source free region.

The conditions of continuity of tangential fields in the
plane z = 0 lead to the following systems.

For TM waves, these conditions give

1 308, \— L lxl<a,
') -0+ — k2 Bz 2=0
kg 0z 120 (2.14)
0, x| > a,
P& !z o = 05D co- ¥l <a (2.15)

Similarly the corresponding conditions for the TE
case yield

(2 x| < a
@ t _n=-"? x ’
N —3 1t lz=0 2. 16)
o as0 0 lx| > a, (
29& aq’g)t
= ——= s x! < a, 2,17
oz 12707 oz '2=0 =] (2.17)

Since the left-hand sides of (2. 14) and (2. 16) are de-
fined for all x,these equations can be used to isolate
g(J)( ) for j = 1 and 2, respectively. Similarly the
mode amplitude B, can be written in terms of g¢i)(u)
by applying (2. 8) to (2.15) for j = 1 and (2. 17) for
j=2.
Consequently, if we insert the appropriate represen-
tations into (2. 14) we can use (2. 13) to solve for
FSAME

2

gD = y,B,(1—T,)

0
kymB(p) rtZ:>0

X f_: cosus cosk4f,s ds. (2.18)

From this point on, it will be necessary on occasion
to interchange the operations of integration and sum-
mation. For example, the justification for the inter-
change of the operations of summation and integra-
tion in (2. 18) follows from Lebesgue's bounded con-
vergence theorem. >4 That is, since the summation in
(2. 18) is a representation of E, in the aperture, and
E, is singular at x = + g, the series is nof uniformly
convergent on the interval (— a, + a). Hence we must
use the bounded convergence theorem in this case.
Note that the interchange of summation and integra-
tion in going from (2. 16) to (2. 20) relies only on the
uniform convergence property of a Fourier series of
a continuous function.1% Since similar results apply
to the other interchanges which follow, this point need
not be discussed again. Thus (2. 8) can be used to
isolate the product B, (1 + r =) occurring in the right-
hand side of (2. 15) obta1n1ng

J.Math. Phys., Vol. 13, No. 4, April 1972

Bpa+ T, = [ eW(an

a
X f_a cosus’ cosk,B,s" ds’. (2.19)
Similar operations yield the following two equations
for the TE polarization. The condition (2. 16) yields
the information

£@u) = 15 B, )f_: cosps cosk,fB,s ds,
n=0 @. 20)
while (2. 17) reduces to
Zkla - 0
B,(1—T,)= [, Be@(udy
m
X f_: cosus’ cosBmkls’ ds’. (2.21)

The pairs of equations (2. 18), (2. 19) and (2. 20),
(2 21) may be cast into either integral equations for
g9 (u) or matrix equations for B,,. We choose the
latter alternative. In this regard it is important to
define the quantities D:. The aperture amplitudes
are defined as

Dy =B,01x+T,). (2. 22)
Note that D} will not have polarization indices. The
coefficients D2 are algebraic in their dependence on
n. This will be verified in Sec. 3 where the edge
singularities are discussed. In contrast to the alge-
braic decay of the aperture amplitudes Di; with mode
number, B,, decreases exponentially,and T',, increa-
ses exponentially with mode number. Thus, if matrix
equations were developed for either of these quanti-
ties, severe numerical problems would result. The
coefficients D} are linearly related through the
source excitation condition (2. 10). This condition
gives directly

Dy, =FP —[1+T,)/Q1~-T,)D;, (2. 23)
where
F® = [(HZT,, + 1)e,,)/[2y nk 00,1 —T )] (2.24)

By eliminating g (u) in (2. 18) and (2. 19) and incor-
porating the definition (2. 22) in the result we get

2 o
. 68 i
Dy = 2 Irr}%'}’n n?

2.25
m Zklan 7-0 ( )

where the matrix element I}, (1) is given by

o a a ,
1w — fo Fﬁ) f_a ds f_a cosps cosps’ cosp,k;s

mn
X cosf, ks’ ds’. (2. 26)
Similarly, eliminating g(?(u) from (2. 20) and (2. 21)
results in the following matrix equation for the TE
mode amplitudes:

€m ee]
Dy, =—=— 2, [2Dp+
m 2k1a7mﬂ 20 munT n3

(2. 27)
where

2 = f de(u)f ds f cosps cospus’ cosf, kS

X cosf,, ks’ ds'.  (2.28)
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Finally, the matrix equations (2. 25) and (2. 27) can be
written in terms of D; and D;, respectively, through
use of (2. 23). That is,

oG

z‘_:,o LD; =F®, for TM waves, (2.29)
where
k2 1+7T
L = 0 "5 (2. 30)
mn Zkla'ﬂ mn 1 _ l-m mn
and F is given by (2. 24).
For the TE case similar steps lead to
<0
nZ=)0 L2D; = F@2, (2.31)
where 1T
L@ Mm@y ™ s
mn Zkla’ymﬂ' mn 1 + I-\m mn
and

H2T  + 1)e,
Pl : (2.32)
ZZymklaHm(l + Fm)

Let us consider I{2), the TM element defined by (2. 26).
A special form of the plane wave representation of
the Hankel function of order zero is needed. The
most general form is written

) 1 eixt +ip(t)z
H§O(koR) == [, 0

where Im[B(f)] = 0 and R = (2 + 22)1/2,

The contour C is depicted in Fig. 2. Making the sub-
stitution ¢ = & sing, we find that the right-hand side
of (2. 33) can be written

a, z>0, (2. 33)

1 ; - -
T Jo, etoRestodo,  where ¥ = tan'l(x/2),
where the contour C’, which is a simple open curve,
comes in from i« in the complex ¢ plane in the

strip ¥ + 7/2 < Re{y) < 31/2 + ¢ and goes to — i
in the strip ¢ —7/2 < Re(p) < ¢ + 7/2. By choosing
Re(¢) = 31/2 +  in the former and Re(¢) =7/2 + ¢
in the later, we find that (2. 33) is equivalent to a
commonly used integral representation of the zero
order Hankel function first given by Sommerfeld.16

Note that, in (2. 33), the branch points { = + k&, must
be avoided as shown in Fig. 2 in order that the radi-
ation condition for z > 0 be fulfilled. That is,

Im[p(u)] = 0

With this convention we see that

g e = S n = w2yl

The absolute value sign within the Hankel function in
(2. 34) is needed to insure equality for x < 0. The
result (2. 34) is physically reasonable since H{ is
the free space Green's function for our two-dimen-
sional problem and it must display symmetry in the
x = 0 plane. Via (2. 34) the infinite integration in

(2. 26) can be performed with the result

(2. 34)

[(1)_277 f dsf cospB, ks’ cosP,kys H(l)(k |'s
+ s’|)ds’. (2. 35)

If we change to sum and difference coordinates
u=8+s',
we find that

I = in[fA fqmn(u, v)dudy + L fqmn(u, v)dudv),
1 2 (2. 36)

_— — !
v=5—¢,

where

(cos{g,, k1[(u — v)/2)}cos{B, k[ (u + v)/2]})

X Ho(l)(kolul).

qmn (u, U) =

The areas A, and A, are depicted in Fig. 3 and thus
may be parameterized:

f fdudvz f—zadufwz f fdudv
h 0 “us2a 2 +2a
_ f aduf u

The result of elementary integration over v and
trigonometric reduction and the substitution # = at is

mAn ,2 2
W= —(=1)yra? Vg H{D (pt) [m sinlm nt)
m2 —n2
—n sin(nnt)]dt where p = kga  (2.37)
and as limiting cases of (2. 37)
2
IQ = — 31q2 fo tHV (pt)[cos(nnt) + sinclnni)]di,
(2. 38)

2
1§ = — a2 fo tH (pt)dt,

where sinc(x) = sin(x)/x.

To simplify notation, it is convenient to define the
function #,(p):

Complex p Plane

— ) _ Ko
K o —

FIG.2. The contour C.

v

(20, 20)

(-20, -20)

FIG.3. The v X v plane.
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ho) = [ HE (o) sintmmtiar, (2. 39)

In terms of the canonical integral 7, (p), the nondia-

gonal elements ) is written

a2/ m?2 —n2)f[mh,,(p) —nh, (p)].
(2.40)

1t is interesting to note that, to within notational
differences, the matrix element corresponding to
1D as obtained by Nussenzveig? agrees with ours.

R (!

It is not possible to carry out the infinite integration
over u first in the case of the TE matrix element.
This is because the integral u is not absolutely con-
vergent and hence the order of integration is im-
portant. What can be done is to perform the two in-
tegrations over the finite limits. Upon doing this and
making the substitution y = af, (2. 28) becomes

oo (p2 — t2)1/2 cos? ¢ ,

1@ =2a a (— 1)r+m (2.41)
mn nm (O’n2 )(O/ t2)
where = 3(2n + 1)7, p = kya.

In order to utilize the integral representation of the
zeroth-order Hankel function (2. 34) in (2.41),and also
to enable us to use partial fraction techniques such
that each term of the partial fraction decomposition

is a convergent integral, we rationalize the numerator.

Then, as usual, we express

p2 — 2 4
= A 2.42
(@2 —t2) (a2 — t2) tz:i ( :
where 2 2
—a
A = a, A =—A4, P =
20, (02 — 02)
>‘2 = — 0y,
A p—
3= 0y 2 _ @2 ( |
Ag=—0a_, A, = — =% 2,43
4 m 3 4 20, (@2 — a?)
Thus combining (2. 41) and (2. 42) gives
@ = 2 AT, (2.44)
where
Al = 20,0,(— l)m*"Aj (2. 45)
and ®© 2tqdt
) = cos i (2. 46)
B T
By inspection of (2. 46) we see that
I(— ) = —I(0). (2.47)

Thus, using thié symmetry along with the symmetries
given in (2. 43), we obtain

L@ = 2A7I(x;) + 245I(x5). (2. 48)
The integral I(x ), defined by (2. 46), can be written as
a linear combination of the canonical integral defined
by (2.39), where s »m + 1. This identification may
be made by considering I(x) as a Fourier convolution
integral, as discussed for example by Goldberg.? We
have
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=/ TR — gt = frg (2. 49)
= 2i f; e i flw)flw)do, (2.50)

where
)y =1/t, glt) = cos2t/(p2 —t2)1/2 (2.51)

and f, § are the Fourier transforms of fand g,i.e.,

flw) = [:

The Fourier transform of 1/¢ is related to the Heavi-
side unit step function

etwtf (f)dt

sl w>0
ulw) = lo, w<o
by
flw) = 27iu(w) — . (2.52)
Thus from (2.50), (2.51), and (2. 52) we get
+00 2
— -iuh [y 1 jwi__ €082l
I0) = zf — zldw f_oo el 0 — )17
or
— i [® gt "o wt_ Cos?i
I(n) zfo griw dwf_oo giw 22z
+00 . 2
_i [ ol Aeos®l g g

- (p2 —2)1/2

Since A is an odd-half integer multiple of 7, the
second term in (2. 53) does not contribute. Hence

0 = éifooo e‘iw%dwf coswt

Em (1 + Coszt)dt.
o0 p p—

(2. 54)

The form of the integral formula (2. 34) to be used in
(2.54) is

COSUX

[T __cospx >0
-~ (p2 — p2)1/2 x '

du = 1H (px), (2.55)

To use (2.55), we express the cosine products in the
integrand as a sum of cosines, and interrupt the
integration over w such that the cosine arguments are
positive for all values of the integration variable {,

to obtain

Q) = 4mi (2 [T eriertig (pw)de

+ fo et MW plw + 2))dw
2
+ fo e iw D (p(2 — w))dw

+ fz et gD (p(w —2))dw>,
which simplifies to

10) = n [ sinOHS (pi)a.

Thus, according to (2. 48), (2 becomes

— 1)ymtn
19 =T (o (02 — 02 5(0)
a2 —a?
— o, (p2 — a2, 5(p)], where a,
= (27 + 1)7/2. (2.56)
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In (2. 56) we have used the notation given by (2. 39).
The diagonal elements are given by

o2 — a2
—(—p————”—) f (sina,t — t cosa,t)HY (pt)dt.

20 0
n (2.57)

This completes the analysis of the integral forms of
the matrix elements. In anticipation of the work to
follow, it is lmportant to note that, for either polari-
zation, lim__, Imfﬂ = 0 by the Riemann-Lebesgue
theorem as for example, discussed by Widder.18
This is a necessary condition for I(J)to be diagonally

dominant.

2) —
Ing)_

Continuing on with the process of rendering the equa-
tions of the form (2. 29) amenable to digital computa-
tion, we obtain an asymptotic series for the canonical
integral %, (p) defined by (2. 39). We write the integral
as
p) = fooHo(l)(pt) sinnat df — f {1(pt) sinnut dt.
0 (2.58)

The infinite integration can be carried out in closed
form19

fooHo(l)(Pt) sin(umt)di
_1+ (2i /minfnn/p — [(nn/p)? for n1 > p.
[(nm)? — p2]2/2 (2.59)

The remaining term can be approximately evaluated
by replacing Hf!) within the integrand by the first
four terms of its asymptotic expansion, 20

2 a
/&) ~f i (a-1/4)
HeV (2) ¢ kEo Zk+1/2’

where aqg =1, a, = —i/8, a, = 9/128, and
ag = 75i/1024.

Jl/21

(2.60)

The integrations of the terms in (2.60) are express-
ible as incomplete gamma functions. Since we are
assuming » 7 to be large these functions may be
approximated also by their asymptotic series. Hence
one finds to the orders indicated

f;oH Opt)sinnat)dt ~ n\/i expli[2(p —n) — 3]}

(nm? — p?
G ik ey (V] (L
* 312) (2p)* Kl " (nm2 —p2> * O<p4>k ! O<n5>'
Thus (2.59) and (2. 61) approximate /,(p) in the re-

(2.61)
gime 1 < p <nw.

Finally we conclude this section with the asymptotic
evaluation of the mode amplitudes for large index.
These results will be used to correct the truncated
systems in the following section. We then will be
prepared to estimate the error incurred in truncat-

ing the infinite system (2. 29). According to Meixner, 21

the field component E,(x, 0) in the aperture plane
has the singularity

E (x,0) ~ Ay/(a?
lxl—>a
where we have accounted for the obvious symmetry in
the x coordinate. Equivalently, the edge singularity
(2.62) can be obtained from Oberhettinger's22
eigenfunction solution to the field in the presence of

— x2)1/3, (2.62)

a perfectly conducting wedge. It should be noted that
the constant A, in (2.62) depends upon the excitation,
i.e., the form of the incident wave as well as the value
of koa If we Fourier analyze the right-hand side of
(2.62), we find

Ao = nux
(@2 — x2)1/3 Aonzjoa" cos(—a—).

It is not difficult to show that the coefficient g, is
given explicitly by

(2.63)

a = (Jllﬁ(n ﬂ)ﬂl/zr‘(gﬂ/[az/s(n7,/2)1/61.

n

(2. 64)

In (2.64), J,,4 is the Bessel function of the first kind
of order 1/6. This completes Sec. 2. We are now
ready to discuss the approximate solution to the
infinite system.

3. THE TRUNCATED EQUATIONS, RADIATION
FIELDS, AND SOME NUMERICAL RESULTS

We now consider only the TM case. Similar results
apply for the TE case. As a means of solving the
system (2, 29), we truncate it at some finite order N.
To estimate the error in so doing, we consider a
percent error defined as

P = 100. | (D; — D;)/D;1, (3.1)
where
N-1
ZJOLWD; = F,, (3.2
N-1
Z‘O L,.D; =F,te, (3.3)
g
and
m = "E LmnDn— 3.4)
=

Note that since we will be discussing only the TM
case, the polarization superscript is deleted.

The singularity (2. 62) in the component E, at the
edges implies that

Lim 7,D; = 6,Aq, (3.5)
where a, is given by (2. 64) and A, as discussed
after (2. 62) is a constant which depends upon the
incident wave form. This is a direct consequence of
a theorem due to Erdélyi.23 From (3. 5) then it
follows that

. (N
Dn g._]‘_)gn/_g__() + (n 7/3) where o w)

:n5/3(__ l)nﬁ’;, n=N-—1. (3.6)

and the error term o(n 7/3) arises from terms of
order o(»1/3) in the expansion of the field components
perpendicular to the edges.

Explicitly, using (3. 6) and (3. 4) and with the defini-
tions (2. 30) and (2. 40), we have

a W, (kea)2(— 1) =
€m > 2n(k,a) Rl

[mh,, (0) — nk, (p)]

(m2 —n2p,s/3 °’

m=01,...,N—1. (3.7
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Note that #,,(p), m =0,1,. — 1, must be calcu-
lated to solve for the flrst 1terat10n coefflclents D
while, for moderate and large values of N, h,(p),

n = N,N + 1,°+, can be calculated using the asymp-
totic series (2. 61) for %,{(p). Hence the error term
e,, given by (3. 7) is readily calculated.

Let us now consider the improvement and also indi-
cate the convergence of corrected equations for the
aperture amplitudes D;. Since the aperture fields are
a sensitive indicator of the effect of truncation, we
illustrate our results in terms of them. Specifically
we consider the magnetic intensity component

O, 2) = H,(x, z) _o- in the aperture. Thus from
(2. 2a) we have

> el

H,(x,07) =2 D; cos(kB,%), x| <a. (3. 8)

Furthermore, in order that we can most easily inter-
pret our results, we also make the simplifying ass-
umptions that 2, = k, and d — «. A letter by the
author8 displayed the convergence of the truncated
system (3. 2) as a function of N. Figures 4, 6, 8 show
the aperture field (3. 8) for kyh = 1 and kya = 0. 2, 3,
and 5. Figure 10 differs from 8 only in that k2 = 30.
In each figure we are comparing the absolute value
of the aperture field (3. 8) where the amplitudes D;
are calculated in the first case by (3. 2) and in the
second by (3. 3). In the latter case a total of 200
modes are summed to approximate e, . Although the
results obtained show that the minimum values of
the graphs of the truncated and corrected aperture
fields are almost identical, we have displaced the
truncated fields downward slightly so that the two
fields may be better compared.

Figures 4, 6, 8, 10 demonstrate that the truncation
correction factor e¢,, is a small correction to the
matrix Eq. (3. 3). This, of course, was implicitly
assumed from the outset and is now seen to be a good
assumption.

The normalized radiation patterns as shown in

Figs. 5,7, 9, 11 correspond to the aperture fields in
Figs. 4, 6, 8, 10. The pattern plots are the normalized
power plots of |E,|2/|max(E,)| 2 where 6 = tan"1(x/z)
in reference to Fig. 1.

The radiationfield is obtained by substitutingthe Fourier
coefficient g)(y) defined by (2. 18) into (2. 12), getting
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R ©
Poxt 06, 2) = —= 20 v,D;Q (%, 2), (3.9)
k1T 2=0

where, upon performing the integration over p, we

obtain

Q05,2) =41 [ cos(B,kyS)[HE(koR*) + HED(koR™)lds
(3.10)

and where R* = [(x + s)2 + 22]1/2,

In the radiation zone,i.e.,for kyR* > 1, one finds
that

Pext = Hy(xy z)~ (— ko/kl)(koa)Hél)(koR)
v, D7 (— 1)70 sin®

n=0 (nm)2 — ©2

(3.11)

where © = 2,a sind.

It can be shown that in the radiation zone
Eq = (i/weg)ie (V X H)~ (y/€0)/2H,,  (3.12)

where Ze is the unit vector in the direction of in-
creasing 0.

Calculations of radiation from the open end of wave-
guide antennas are usually based upon approximate
methods originally devised by Kirchhoff. Although
these methods are highly versatile, it is not clear
that they should be applicable to configurations in
which the waveguide width is on the order of one
wavelength. Thus it is of interest to compare our
results with those obtained with the Kirchhoff approxi-
mation. Within the present formalism, the most
direct route to the Kirchhoff radiation pattern is to
note that, in this approximation, the aperture ampli-
tude D; to be used in (3. 11),is given by assuming the
parallel plate region extends to z = + 0, and hence,
in the notation (2. 2a), T', = 0. This gives

Dn(kir)_ = cikoynk, (3.13)

In Figs. 5,7,9, 11, the solid curve corresponds to the
normalized |E, |2 pattern obtained from (3. 12); the
triangular symbols correspond to the same quantity
with the coefficients defined by (3. 13), while the
circle symbols correspond to the same quantity
obtained from (3. 11) in which only the term which
most nearly satisfies

Re(k,a) = n (3.14)

in the sum is retained. This is the resonant mode
contribution to the radiation field.

The discrepancies between the matrix solution (the
solid curve) and the Kirchhoff solution (triangles) in
the lit region stem from the fact that the more rigor-
ous solution predicts a maximum value of the coef-
ficient Dy, for the » which most nearly satisfies

(3. 14), while the Kirchhoff predicted values satisfy
(3.13). For narrow apertures, in which only the TEM
mode (z = 0) propagates, we would then expect good
agreement since both theories would yield Dj a maxi-
mum. This narrow aperture limit is shown in Fig. 5.
Figure 7 was chosen near resonance kya = 3 ~ 7.
The figure demonstrates the inability of Kirchhoff
theory to account for resonance. Figures 8 and 10
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demonstrate the minor effects, except for the total
aperture amplitude, of the position of the line source
in the central plane. In all the radiation patterns,the
solutions in the low angle (/8| < 7/2) regions show
discrepancy. This is a consequence of the inability
of the Kirchhoff predicted fields to properly describe
the edge diffracted components of the radiation. That
is, D§#i7)" as given by (3. 13) displays exponential be-
havior for large » while D; according to (3. 5) shows
an algebraic dependence. These radiation conclu-
sions ar€ in agreement with the analysis of the un-
flanged cases, treated in an elegant fashion by Wein-
stein.?

To conclude our discussion of radiation patterns, we
present a comparison of our results with a slope dif-
fraction analysis obtained by Rudduck and Wu.24
Their configuration consists of a guide width of

kya = 1. 40 with a TEM illumination of the aperture.
Since this width prohibits propagation of all higher-
order modes, we take kyh to be large (= 30.0) for the
purpose of comparison. The results are displayed

in Fig. 12,

4., CONCLUDING REMARKS

We have shown that it is possible to treat the radia-
tion from an open-ended structure terminating in a

flange plane in a formally exact and straightforward
manner. In particular we have shown that the resul-

HOWARD, JR.

tant infinite system of equations can closely be
approximated by a finite system provided one
accounts for truncation. With notable exceptions,
namely near resonance and in the low observation
angle regions, Kirchhoff theory is shown to correctly
predict radiation patterns from such configurations.
Since the nature of the formulation required that
rather large systems of linear equations be consi~
dered, the matrix elements were analytically reduced
to simple form. Thus the elements were factored in-
to canonical integrals which depended on only one
matrix index. This enabled an N X N matrix to be
generated from 2N integrals. An asymptotic series
in mode index was developed to provide an efficient
means of obtaining the truncation correction terms.

Finally, it should be noted that our technique can be
applied to similar but more complicated structures.
For example, preliminary results on the analogous
analysis for a circular flanged guide in which the
flange boundary condition is relaxed to account for a
more general impedance condition have been
obtained.25

ACKNOWLEDGMENTS

The author acknowledges Dr.J. R. Wait for important
comments and suggestions, and gives thanks to Dr. G.
Hufford for helpful discussion.

* The material herein is excerpted from a chapter of the author's
dissertation to be submitted to the Department of Physics at the
University of Colorado.

1 A, Wexler,IEEE Trans. Microwave Theory Tech. 17,416 (1969),

2 P.H.Mastermann and P.J. B. Clarricoats, Proc.IEE 118, 51
(1971).

3 A.Wexler, IEEE Trans. Microwave Theory Tech. 15, 508 (1967).

L. Weinstein, The Theory of Diffraclion and lhe Facloyizalion

Method (Golem, Boulder, Colorado, 1969), Chap. 1.

5 R.Mittra and S. W. Lee, Analviical Techniques in the Theory of
Guided Waves (Macmillan, New York, 1971),

6 H.Y.Lee,L.B. Felsen, and J. B. Keller, SIAM J. Appl. Math. 18,
268 (1968).

H. M. Nussenzveig, Phil. Trans. Roy. Soc. London A252,1 (1959).

8 A.Q.Howard, Electron. Lett. T, Nos. 5.6, 129 (1971).

9 C.M.Do Amaral and J. W. Bautista Vidal, Appl.Sci.Res.B 11,1
(1964).

10 The scatter matrix L{j) for the problem under consideration is
defined by (2.30) or (2.31) asj = 1 or 2.

11 The property of diagonal dominance is discussed by Ref. 1.

12 J A, Stratton, Eleclromagnelic Theory (McGraw-Hill, New York,
1941), pp. 349-51,

N

13 J, R. Wait, Radio Sci. 68D, 81 (1964).

14 P. R.Halmos, Measure Theory (Van Nostrand, New York, 1950),
p. 110.

15 R, V. Churchill, Fourier Series and Boundary Value Problems
(McGraw-Hill, New York, 1963), p. 104.

16 A. Sommerfeld, Math. Ann. 47, 335 (1896).

17 R. R. Goldberg, Fourier Transforms (Cambridge U. P., London,
1961}, pp. 18-20.

18 D. V. Widder, Advanced Calculus (Prentice-Hall, Engelwood
Cliffs,N.J., 1961}, 2nd ed., p. 408.

19 A, D. Wheelon, Tables of Summable Series and Integrals Involving
Bessel Funclions (Holden-Day, San Francisco, 1968),

20 M, Abramowitz and I Stegun, Handbook of Mathemalical Func-
tions {U.S. Govt. Printing Office, Washington, D.C., 1965), p. 364.

21 J, Meixner, NYU Res. Report No. EM-72 (1954).

22 F.Oberhettinger, Commun. Pure Appl. Math. 7, 551 (1954).

23 A.Erdelyi, Asympiotic Expansions (Dover, New York, 1956).

241 R. C. Rudduck and B. C. F. Wy, IEEE Trans. Antennas Propagation
17, No. 6 (1969).

25 A.Q.Howard, ITS Tech. Memo. OT-TM 46, Boulder, Colorado
(1971).

On Uniqueness of the Kerr-Newman Black Holes*
Robert Wald¥

Joseph Henvyv Labovalovies. Princelton Univevsity, Princelon, New Jevsev 08540
(Received 21 June 1971; Revised Manuscript Received 6 October 1971)

1t is proven that the Kerr—Newman space—times with e2 + a2 < m?2 are the only electrovac black hole solutions
of Einstein's equations which can be obtained by analytic variation of the space—time geometry starting from

the Schwarzschild solution.

1. INTRODUCTION

In a recent paper,! the author has described a new
theorem which leads one to believe that the final
state of general (nonspherical) gravitational collapse
is a Kerr-Newman black hole.2753 The present paper
presents the detailed statement and proof of this
theorem.
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It is widely believed that the complete gravitational
collapse of a body results in the production of a black
hole as opposed to a “naked singularity.” (The physi-
cal arguments leading to this conjecture are sum-
marized in Ref. 1.) Thus, it is of great interest to
find all the solutions of Einstein's equations which
describe black holes, since, if this conjecture is
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1t is proven that the Kerr—Newman space—times with e2 + a2 < m?2 are the only electrovac black hole solutions
of Einstein's equations which can be obtained by analytic variation of the space—time geometry starting from

the Schwarzschild solution.

1. INTRODUCTION

In a recent paper,! the author has described a new
theorem which leads one to believe that the final
state of general (nonspherical) gravitational collapse
is a Kerr-Newman black hole.2753 The present paper
presents the detailed statement and proof of this
theorem.
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It is widely believed that the complete gravitational
collapse of a body results in the production of a black
hole as opposed to a “naked singularity.” (The physi-
cal arguments leading to this conjecture are sum-
marized in Ref. 1.) Thus, it is of great interest to
find all the solutions of Einstein's equations which
describe black holes, since, if this conjecture is
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correct, one would then have a complete and detailed
knowledge of all the possible final states of gravita-
tional collapse. The only known black hole solutions
are the three-parameter family of Kerr-Newman
space-times.2~5 Theorems proven by Carteré and
Israel? have led to the conjecture that they are the
only black hole solutions. Israel proved that the
Reissner—Nordstrom black holes (i.e., Kerr-Newman
black holes with no angular momentum) are the only
static, asymptotically flat, electrovac space-times
with closed, simply connected surfaces of constant
&op Which have a nonsingular event horizon g5, = 0.
Carter considered axisymmetric black holes with no
electromagnetic fields and proved that perturbations
of these solutions which preserve the vacuum, axi-
symmetric, black hole properties are uniquely deter-
mined by the changes in two parameters associated
with these solutions. Thus, Carter's result gives
good reason to believe that the two-parameter Kerr
family may be the only axisymmetric, vacuum, black
hole solutions. In addition, independent investiga-
tions® of Ipser and myself have shown that the Kerr-
Newman electromagnetic field is the only well be-
haved axisymmetric, electromagnetic perturbation of
the Kerr black hole with no magnetic monopole
moment.

In the present paper it is proven that the Kerr-
Newman black holes are the only black hole solutions
obtainable by analytic variation of the space~time
geometry starting from the Schwarzschild geometry.
(See Sec. 2 for a precise statement of what is meant
by this.) The important restrictive assumptions of
“static” (as opposed to stationary) in Israel's work
and “axial symmetry” and “no electromagnetic
fields” in Carter's work are not made here. Further-
more, as argued in Ref. 1, it is highly plausible that—
at least for small deviations from spherical sym-
metry—the final space—-time geometries resulting
from collapse can be analytically developed from the
Schwarzschild geometry (known to be the final state
of spherically symmetric collapse). Thus, the theo-
rem proven here leads one to believe that—at least
for small deviations from spherical symmetry—

the final state of gravitational collapse is a Kerr-
Newman black hole. (Of course, it should be empha-
sized that not only is there no compelling reason to
believe that this analytic variation assumption is
valid for collapse with large deviations from spheri-
cal symmetry, but there is not even any compelling
reason to believe that such collapse would result in
a black hole, since it is only for infinitesimal devia-
tions from spherical symmetry that collapse to a
black hole is reasonably well established.® Thus,a
great deal remains to be proven!)

The results of this paper may be described in physi-
cal terms as follows: Consider an electrovac black
hole which differs slightly from a Schwarzschild
black hole. The results of first-order perturbation
theory (see Lemmas 1 and 2 of Sec.IV) show that in
the first approximation this black hole can differ
from the Schwarzschild black hole in mass, angular
momentum, and charge, but it cannot have any higher
multipole moments (e.g., no mass quadrupole moment
or magnetic dipole moment, etc.). However,in the
second and higher approximations, when account is
taken of the first-order changes in angular momentum
and charge, the black hole can have higher multipole

moments. It is proven here that when all orders of
approximation are taken into account, all the higher
multipole moments must be fixed relative to the
mass, angular momentum, and charge in precisely the
same manner as for Kerr-Newman black holes.

Hartle and Thornel? have given an expression for the
exterior field metric of a nearly spherical star (or
black hole) in which the effect of mass quadrupole
moment is calculated to lowest nonvanishing order
and the effect of angular momentum is calculated to
second order. Examination of this expression sug-
gests that for black holes one will have singular be-
havior at the horizon unless the quadrupole moment
is fixed in terms of the angular momentum in the
same manner as for Kerr black holes. Aside from
putting this conclusion on a rigorous footing, the pre-
sent paper may be viewed as an improvement of the
Hartle and Thorne result in the following significant
ways: (1) Axial symmetry and reflection symmetry
{assumed by Hartle and Thorne) are not assumed
here; (2) electromagnetic fields are permitted to
occur here; (3) the Hartle and Thorne result is gener-
alized to all orders and it is thus shown that the
Kerr—Newman solutions are the only black hole solu-
tions that can be obtained by a perturbation series
expansion about the Schwarzschild solution.

Another method for generalizing perturbation results
to analytic variation (and, in fact, to even a somewhat
wider class of functions than analytic) has been deve-
loped independently by Carter (private communica-
tion) and applied to his axisymmetric black hole per-
turbation analysis. Carter has recently shown that
this method can also be applied to the problem treat-
ed here (where the gauge arbitrariness causes a num-
ber of difficulties).

After this paper was submitted for publication, Haw-
king announced the proof of a new theorem which
states that a stationary black hole must be either
static or axisymmetric. As a consequence, a result
on black hole uniqueness stronger than the one pre-
sented here in that it excludes various possibilities
for black holes not analytically connected to Schwarz-
schild could be obtained by combining the theorems
of Hawking, Carter, 6 Israel,” and Wald and Ipser.8
The proof of the theorem presented here is entirely
independent of (and considerably simpler than) these
combined theorems.

In Sec. 2, the analytic family @ of electrovac black
hole space~times containing the Schwarzschild solu~
tion is defined and the theorem is stated. In Sec.3
we derive conditions (summarized at the end of the
section) on the nth-order perturbations of the metric
and electromagnetic field tensor. Two lemmas are
presented in Sec. 4 and the theorem is proven in Sec.
5.

2. STATEMENT OF THE THEOREM

We define a one-parameter analytic family of electro-
vac black hole space—times containing the Schwarz-
schild solution of mass m, to be a family of space—
time metrics g(a) and electromagnetic field tensors
F(a) satisfying the following five conditions:

(I) For each a,the pair g(a), F(a) is a solution of
the Einstein—Maxwell equations

J. Math. Phys., Vol. 13, No. 4, April 1972
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G,,(8(0) = 81T, (@) = 2(F,,F,2 — 4g,,F,,Fp°) (1)

F“U;UZO! *Fl“/;u:(), (2)
where “;” denotes covariant derivative and *IF de-
notes the dual of F. For @ = 0,the metric g(0) is the
Schwarzschild metric of mass mgy, my > 0,and

F(0) = 0.

(II) Each g(a) is asymptotically flat and stationary.
[Stationary means g(a) has a Killing vector which is
timelike at large distances.] This requires that for
each « there exist “Schwarzschild-like coordinates”
denoted ¢, 7, 6, ¢ having the following properties: (a)
9/0t is a Killing vector which is timelike for large 7;
and (b) the metric is asymptotically Minkowskian and
the field tensor components are 0{1/72) as » — © in
the coordinates ¢, X, Y, Z, where X = v sinf cos¢,

Y = ~ sinf sin¢,and Z = 7 cosb.

The Schwarzschild-like coordinates ¢, 7, 8, ¢ will be
denoted x#, or simply x,in the following and the com-
ponents of g(a) in this coordinate system will be de-
noted Sgw(az x) (s standing for “Schwarzschild-like
coordinates”). For @ =0 we take these coordinates to
be the standard coordinates of the Schwarzschild
metric g(0), i.e.,

ds2(a =0)=— (1 — 2mg /r)dt2 + (1 — 2my /¥y tdr2
+ 72(d92 + sin29d¢2).

(II) The exterior region,i.e.,the domain of outer
communications, and the horizon of each g(o) is non-
singular. (The domain of outer communications is
defined as the set of points lying on timelike curves
which escape to arbitrarily large distances in both
future and past directions;the horizon is defined as
its boundary.) This requires the existence of analytic
extension coordinates (i.e., “generalized Kruskal
coordinates”) which cover the exterior region and
horizon of g(a). (The Schwarzschild-like coordinates
need not cover this entire region, e.g., they may break
down on the horizon.)

The analytic extension coordinates will be denoted
zH# or simply z, in the following, and the components
of g() in this coordinate system will be denoted
g“u(a z) (A standing for “analytic extension co-
ordinates”). We shall assume that, for fixed a,
gu”(a z) varies analytically in z although str1ctly,
it is only necessary to assume it is C2 in z. For
o = 0 we take these coordinates to be the standard
Kruskal coordinatesl! of the Schwarzschild metric
£(0).
(IV) The metric and field tensor components in the A
coordinate system vary analytically with «,i.e,,
gw(a z) and AI“;1 (a, z) are analytic functions of .
We shall assume that Ag“ (o, 2) and AFw(a, Z) are
jointly analytic in (e, 2), although, strictly, it is only
necessary to assume separate analyticity in a and
existence and continuity of all partial derivatives of
second order in spacial derivatives and arbitrary
order in @ (so that we may commute a derivatives
with the spacial derivatives occurring in Einstein's
equations). (In Ref. 1 only separate analyticity in o
and z was postulated because it was thought to imply
joint analyticity by Hartog's theorem; however, Har-
tog's theorem requires the functions to be defined on
an open complex domain.)
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(V) The transformation from the analytic coordi-
nates to the Schwarzschild-like coordinates x# =
x"(a, z) varies analytically with a. Again, we assume
that, in the region where the Schwarzschild-like co-
ordinates are defined, we have joint analyticity of
x#{a, z). [Strictly,only continuity of the partial deri-
vatives of x#(c, 2) of third order in z and arbitrary
order in « is required.] This implies, using (IV),
that, where defined, sg,,, (e, x) and SF,,(a,x) are
analytw in {a, x). In add1t1on we expl1c1t1y postulate
that the a-partial der1vat1ves of sg,, and 5F , are
respectively O(1/7) and O(1/72) as p— [Thls does
not automatically follow from (II) as examples like
ar/(e2 + ¥2) and (1/7) sinar show. ]

The first three conditions require each g(a) to be an
electrovac black hole, i.e., an asymptotically flat,
stationary, vacuum except for electromagnetic fields,
solution of Einstein's equations with a nonsingular
exterior region and horizon. (IV) and (V) require the
space—time properties of the black holes g(a) to vary
analytically with «.

Nole added in proof: It would probably be more
reasonable physically to consider and analytically
vary only the exterior region and future part of the
event horizon, since the past horizon would not be
produced in gravitational collapse. This would affect
the results only in that it would allow the Kerr—New-
man solutions with €2 + a2 = »:2 to be in Q.

One may wonder why we introduce two coordinate
systems (s and A), i.e., why not simply start with the
Schwarzschild metric expressed, say, in Kruskal co-
ordinates and look for all black hole solutions obtain-
able by analytically varying these metric components,
without ever worrying about the s system. The
trouble with doing this is that we would then have no
mathematically convenient way of expressing the
condition that the solution be stationary and asymp-
totically flat. Similarly, we could analytically vary
the metric components starting with the Schwarzs-
child metric in standard Schwarzschild coordinates
and not worry about the A coordinates; but then we
would have no mathematically convenient way of in-
suring that the horizon be nonsingular. There would
be no problem if it were reasonable to demand that
the s and A systems be compatible, i.e., that for all
black holes one could find a single coordinate system
satisfying both properties (I) and (I) simultaneously;
however, this is not reasonable, since it is easy to
see that for the Schwarzschild metric any coordinate
system that uses the static Killing vector as a coor-
dinate (as required for an s system) cannot cover the
entire horizon (as required for an A system). We
overcome the above difficulties by working with both
systems and requiring that as we analytically vary
the metric components in the A system [property
(IV)), the coordinate transformation from the A sys-
tem to the s system also varies analytically [pro-
perty (V)]. [In other words, we require that (or,

more precisely, we seek only solutions for which) the
timelike Killing vector and the location of the asymp-
totically flat region of the space—time change
smoothly as the metric components are smoothly
varied; this need not automatically happen since as
one smoothly varies the metric components one
might suddenly get a completely different global in-
terpretation of the space-time; but in such a case the
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properties of the space—time change drastically
(even though the metric components in the A system
vary analytically), so we are justified in including
property (V) as part of the definition of black hole
space—~time analytically developable from Schwarzs-
child.] By using both coordinate systems we can con-
veniently express all the black hole requirements.
Property (V) then allows us to relate perturbations
in the A system to those in the s system.

The (total) analytic family G of black hole space-
times containing the Schwarzschild solution is de-
fined to be the set of all space-~times belonging to
some one-parameter analytic family defined above.
We prove the following theorem:

Theovem: The analytic family @ of electrovac
black hole space—times containing the Schwarzschild
solution is completely spanned by the Kerr—Newman
space-times with ¢2 + a2 <m?2,

The meaning of the theorem is heuristically illustra-
ted in Fig. 1.

It is not difficult to verify that the Kerr—Newman
space-times,

2 2 2 _
_r2+a%+e 2mr(d

— a sin28d¢)?
¥2 + a2 cos?9

__sin?§ 2 1 a2Vdel2
5T 2% con?s [adi — (2 + a2)d¢]

2
+ (r2 + a2 cos26)< dr + d92>
2 + a? + e2 — 2myr
3)

_ 2e
(2 + a2 cos26)?
x (r2 — a2 cos20)dr A (dt — a sin26d¢)

__4ear sing cosf 9 A [adt — 2 + a2)d¢) (4)
(2 + a2 cos26)2

belong to @ for e2 + a2 < m2, Namely,to show that
an arbitrary Kerr-Newman solution characterized
by the parameters m, a,,e; with e;2 + a2 < m,2
is in @, construct a one-parameter family g(a), F (o)
of Kerr—Newman solutions by taking m(a) = m, +
a(m, —my), ala) = aa,, e(a) = ae,, so that g(1),
F(1) is the given solution. From the properties of
the Kerr—Newman space-times,® one may verify that
g(a), F (o) satisfy conditions (1)—-(5) of the definition
of one-parameter analytic family. The given solution
is in this one-parameter family, and thus is in Q.

On. the other hand, the Kerr-Newman space~-times
with ¢2 4+ a2 = m2 (where the structure of the hori-
zon changes) or ¢2 + a2 > m?2 (where the horizon
disappears altogether) do not belong to @. For

e;2 + a;2 = m,2,a one-parameter family g(a), F(a)
constructed as above would fail to satisfy (IV) and
(V) [and even (II) for e;2 + a2 > m;2].

We now prove the nontrivial part of the theorem
namely, that the Kerr-Newman space-times are the
only members of G, i.e., that any one-parameter
analytic family g(a), F(a) satisfying (I)-(V) is com-
posed of only Kerr—~Newman space~times. We pro-
ceed by obtaining conditions on all the derivatives
£@ and F @) of g(a) and F(a) with respect to o at

a =0,

"KERR-NEWMAN
pIsc”

SCHWARZSCHILD

FIG 1. “Black hole solution space.” Each point in the figure repre-
sents an electrovac black hole solution of Einstein's equations. The
dependence on mass is suppressed and e and a are, respectively,
the values of the charge and angular momentum per unit mass of
the black hole. The vertical direction represents all other quanti-
ties besides mass, charge, and angular momentum upon which a
black hole might depend, e.g., higher multipole moments. The disc
represents the Kerr—Newman black holes and the curve g(a) re-
presents an arbitrary one-parameter analytic family satisfying
Conditions 1-5. The theorem states that g(a) must lie entirely in
the “Kerr-~Newman disc.”

3. CONDITIONS ON g(» AND F ®

Properties (IV) and (V) require the components

sgy,(a,x) and SF (o, x) to be analytic functions of
a. Hence, we may expand them in a power series in
a:

® n
gy, (0, x) = n{%%— £8x), (5a)

X n
Py, x) = 2 S SFE), (5b)

where
sgt(x) = Y (a,x) |x fixed, (6a)
o=
ans

F) = —2 (@) | fixed, (6b)

Note that sg©Q) = sg,, (o = 0) is the Schwarzschild
metric and SF(0 = (51 We denote by g® and F® the
tensors deflned on the Schwarzschild manifold g(0)
whose components in the standard Schwarzschild co-
ordinates of this manifold are just sg{?) and sF{).

We now translate Conditions 1-5 on g(n) F(a) mto
conditions on the “nth-order quantities”™ g("’ and F @
and show that, given lower orders, g™ and F @ are
determined uniquely up to the addition of tensors of
a particulay form. From this “uniqueness theovem”
on g and FW, it will be shown that each g(a), F(a)
is indeed a Keyvv-Newman solution.

Property (II) and the additional explicit assumption
stated in (V) immediately yield the t‘ollowmg two con-
ditions on g® and F® forn Z 1: (1) sg®)(¢,7, 0, ¢)
and sF{)(¢, 7, 0, ¢) must be independent of t; and (2) in
the coordmates t,X,Y,Z, the components of £ must
be O(1/7) and the components of F® must be O{1/72)
as ¥ — %,

Next, we obtain equations for g and F) (called the
“nth-order equations”) by differentiating the
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Einstein—Maxwell equations (1), (2) n times with
respect to a (keeping x fixed) and setting @ =0, When
we differentiate (1) once with respect to @ and set

a = 0, the right-hand side of (1) gives no contribution
because F appears quadratically and F(@ =0)=0. We
thus get a linear, homogeneous system of equations
for the “first order perturbation” g(*) which (by
definition) are the linearized Einstein field equations
in the Schwarzschild background g(0). These equa-
tions, which have been extensively treated in pertur-
bation analyses of the Schwarzschild metric,12-15
will be denoted as

G, (gW) = 0. )

Similarly, we get equations for FV by differentiating
the “Maxwell half” of the Einstein~Maxwell equations
once with respect to o (keeping x fixed) and setting

a = 0. The equations thus obtained for the “test
field” F(1) are simply the Maxwell equations in the
Schwarzschild background, which will be denoted as

M (FD) = 0, (8)

To obtain the essential form of the nth-order equa-
tions, we make use of the following general principle.

Highev Ovdev Equations Principle: nth-order
equations involve nth-order quantities in precisely
the same manner as first-order equations involve
first~order quantities.

The proof of this statement is given in Appendix A.

By the above principle, the nth order equations for
g and F® must be of the form

Suv(£™) = (lower order terms), (9)
M, (F@) = (lower order terms), (10)

where G,, and 0, are the same operators as those
in Egs. (7) and (8), and “lower order terms” means

terms involving only g(? and F (i) with ¢,j <,

The final conditions on g® and F ™ are obtained
from the existence of the analytic coordinates z.
The analyticity of 4g,,(a, 2) and 4F, , (@, 2) in (@, 2)
[property (IV)] requires that all the partial deriva-
tives of 4g,,(a,z) and AF ,, (o, z) with respect to a
at a@ = 0 must be analytic functions of z throughout
the exterior region and horizon of the Schwarzschild
metric g(0), where the partial derivatives

n

_ 2 _

Agin)(z) = - Ag,,(a,z) 2 fixed,
n

AF‘;U”U](Z) = aia: AFuu(a; z) ;j(i)xed

are to be taken holding z (not x) fixed. [The square
bracket around the superscript n denotes partial
derivatives taken with z fixed, as opposed to the
round bracket, Eq. (6), which denotes partial deriva-
tives taken with x held fixed.] In particular, Ag‘[f‘l}
and AF[#] must be finite at the horizon. In order to
make use of this condition, we must relate 4 gi"] and
AF{#) to the tensors g and F® defined by their
Schwarzschild components, Eq. (6). We first obtain
expressions for AF[1) and 4 g1l
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By the tensor transformation law, we have

P o
AF, (a,2) = sF, (e, x(a, 2)) ZZ—“ gz" .
From the fact that ¥ (& = 0) = 0 and that when o = 0
the analytic coordinates reduce to the Kruskal co-
ordinates of the Schwarzschild metric g(0) (see Con-
dition 3), it is not difficult to verify that, differentiat-
ing (11) once with respect to o, holding z fixed, we get

(11)

AFLY = XF@, (12)

where KFP,,(D denotes the components of the tensor
F in the Kruskal coordinates of g(0).

The expression for 4gl11is slightly more complica-
ted on account of the fact that g(a) does not vanish at
o = 0. However, it is not difficult to verify that, de-
fining f#(a, z) by

f“(a,z):z“(a,x(a,z))——z”(O,x(O,z)) (13)

(so that f* is the difference between the actual and
zeroth-order analytic coordinates), we have

Aglhl = *g )~ f1Al — fi, (14)

where X g(1) denotes the components of gV in Kruskal
coordinates,

(fiihe = il z) z fixed

o=0

and “;” denotes covariant derivative in the Schwarzs-
child metric g(0). In other words, the first-order
change in the analytic coordinate components of the
metric is the sum of the first~order change in the
metric, Kg® — Kg(0) + ok g(l) and the first-order
(gauge transformation) effect of the coordinate trans-
formation z# — zV + f (1L,

By the higher-order equations principle, it follows
that the equations obtained by differentiating (11)»
times with respect to o (holding z fixed) and setting
a = 0 must be of the form

AFIn) = EF () + (lower-order terms), (15)

where “lower-order terms” denotes terms involving
only F() and f0iJ with 4, <#. Similarly,

Aghn) = Kgn) — fl — f{nl, + (lower-order terms),

(16)
where “lower-order terms” here denotes terms in-
volving g¢? and f 71 with 4, j < n.

" We summarize the conditions on g0 and F®, »n = 1,

which we have obtained above.

(Cl) sgi(t,r,0,¢) and SF)(¢, 7, 6, ¢) must not de-
pend on £.

(C2) In the coordinates ¢, X, ¥, Z,the components of
£® must be O(1/7) and the components of F ™ must
be O(1/72) as » — ©,

(C3) g™ satisfies Eq. (9), where G, is the linearized
Einstein field equations operator in the Schwarz-
schild background. F® satisfies Eq. (10), where 9, is
the Maxwell equations operator in the Schwarzschild
background.
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(C4) Agln) and AF{z) must be finite at the horizon.
These quantities are related to g® and F® via Eqgs.
{15) and (186).

4. TWO LEMMAS

The proof of the theorem is based on the two lemmas
presented below, The first lemma has been effec~
tively proven by Vishveshwara.l4

Lemma 1 (Vishveshwara): Let & be a symmetric
tensor defined on the Schwarzschild manifold satisfy-
ing the following four conditions.

(G1) shy,(t,7,8,d) is independent of £.

(G2) In coordinates t,X, ¥, Z, components of % are
O{l/ryasr — «©,

(G3) & satisfies the linearized Einstein equations
Spv(h) =0.

(G4) There exists a gauge transformation £#* such
that the Kruskal components (X%, — §,;, — {,;,)
are finite at the horizon,

{In other words, % is a well behaved, stationary per-
turbation of the Schwarzschild metric.) Then,

skuv proed COTO+ CxT1x+ Cyle"}“ Clez+ gp;n + &y:g_,

(am
where Cy,C,,C,,C, are arbitrary constants; T,
T14, 71y, Ty, are tensors defined as follows:
1 0 00
.1 (1—2m/ry2 0 0
0=y 0oy
{sym.) 0
0 0 — sing — sind cosfb coso
T. = 1 0 0 0
1z =¥ 0 0
{sym.) 0
(18)
0 0 cos¢ — sind cosf sing
T = 1 g ¢ 0
Iy =y 0 0 ’
(sym.) 0
0 0 0 sin26
1 0 ¢ 0
Tia=% 0 0
(sym.) 0

(the rows and the columns being in the order ¢, 7, 9,
¢); and £# is a gauge transformation which preserves
8/0t as a Killing vector and preserves the asymptotic
behavior (G2) of 2 as » - w0, but is otherwise arbi-
trary.

In Appendix B, Vishveshwara's results are described

and the necessary steps are given to prove the above
lemma from his analysis.

Lenana 2: Let § be an antisymmetric tensor de-
fined on the Schwarzschild manifold satisfying the
following four conditions.

(F1) s&,,(, 7,6, ¢) is independent of ¢,

(F2) In coordinates ¢,X,Y,Z, the components of &
are O(1/r2)asr —» «©,

(F3) & satisfies the source~free Maxwell's equations
M, (F)=0.

(F4) The Kruskal components ¥§ , are finite at the
horizon.

{In other words, ¥ is a well behaved, static, test elec-
tromagnetic field in the Schwarzschild background.)
Then, if magnetic monopoles are excluded,

F = (C/r2)dt A dr, (19)

where C is an arbitrary constant. (If magnetic mono-
poles are permitted, duality rotations of this field
tensor are also acceptable.)

Proof: An arbitrary “static” (i.e., independent of
t) source free electromagnetic field tensor in the
Schwarzschild background can be derived from an
electrostatic potential V (yielding arbitrary ¥,, =
—2dV/3x?and a magnetic scalar potential16 ¢ (yielding
arbitrary *¥,; = — 0y/0x? and hence arbitrary ).
Maxwell's equations require that V satisfy?.17

1 23 oV 1 1
0=— 2 (2824
v2 3y (’r dy) 1— 2m/7 v2 sind

2
X (-a— sinf 1A + —-1—- _Q_Y_) {20)
a8 3¢  sinf 9¢2

By the tensor transformation law,

ar at
KSve = °Tpg PR TR

gm2  dmu
= Sfﬂe(*—,:“”e v 2"‘) + sffze(m),

(21)
where u and v are the standard Kruskal coordi-
nates.1! Setting v = 0 and letting u# = 0 (i.e., setting
f = 0 and letting » — 2m), we get that the finiteness
of £F . implies that sF,, - 0 as » — 2m,i.e.,
dV/26 — 0 as ¥ — 2m. Similarly, finiteness of XF
requires 0V/d¢ — 0 as » —» 2m. But examination of
the explicit solutions?:17 of (20) shows that all the
nonspherically symmetric solutions which go to zero
as r = 2m also blow up as » ~ %. Hence, only the
spherically symmetric solutions are acceptable, and
the most general acceptable solution of (20) is thus,

V=cy+cy/7, (22)

which is just the electrostatic monopole field of the
Reissner~Nordstrdom solution.

In fact, this result can also be obtained without direct
examination of the explicit solutions of (20). Namely,
a solution of (20} in some region must take its maxi-
mum and minimum values on the boundary of the
regioni® and hence is uniquely determined in the
region by its boundary values. For solutions which
are well behaved as » — %, we may require V ~ 0 as
¥ — %, The solution in the region » > 2m is then
uniquely determined by its value at the boundary » =
2m. Since, as we have shown above, for acceptable
solutions V must be constant at » = 2m, and since
the solutions V= c,/7 yield all possible constant
values at v = 2m, they must be the only acceptable
solutions.

The equations and boundary conditions for ¥ are
identical to those for V,16 so we also have
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W= ch +ci/r. (23)

This solution, however, gives rise to a magnetic
monopole field, so we exclude it on physical grounds.
[Not rejecting this solution would affect our final re-
sults only in that it would permit duality rotations of
the field tensor (4) associated with the Kerr—Newman
metric (3).] Thus, the most general acceptable field
tensor is

§ = 2d(Vdt) = — (2¢,/72)dr A dt, (24)
which concludes the proof of the lemma.

5. PROOF OF THE THEOREM

The lemmas of the previous section show that
lower orders, the arbitrariness of g™ and F& s
quite limited. Namely, consider two analytic, one-
parameter families g(a), F(a) and g’ (a), F'(a) which
are identical in all orders j < »,i.e.,g() = f'L7],
F() = Fr(i) and fU3] = f'L7] [wheref is defined by
Eq. (13)] for all j <z, Let sh{n = sg{w — sg' ().
From (C1) and (C2) it is easy *to see that £ satis-
fies the hypotheses (G1) and (G2) of Lemma 1. If we
take the difference of Egs. (9) for g® and g’ ®),

and g’ (71),

given

gpy(g(")) = (lower-order terms), (25a)

S (g (m) = (lower-order terms)’ (25b)
and recall that G, is linear and that by hypothesis
the primed and unprimed lower-order terms are
equal, we get

G, (M) =0, (26)

, sh{m satisfies (G3). Similarly, if we take the dif-
ference of the expressions (16) for 4g{?) and agtn,
agln = xg(m = fin} — fln] + (lower-order terms),

(27a)
=fuipl = f;Im + (lower-order terms)’

(27b)

noting that the difference of the two analytic func-
tions 4 gln and Ag/ln] must also be analytic, we obtain
that Kh{D + (Uil = f0m)),. + (fInl— f70n]),. must
be f1n1te at the horizon, i. e , (G4) is also satlsfled.
So, sh(7) satisfies the hypotheses of Lemma 1 and
is thus given by Eq. (17).

Slmllarly, s§(w = sF() — sF, (" satisfies conditions
(F1)-(F4) of JIL..emma 2 and hence must be of the
form (19)

Furthermore, if g{o) and g’ (a) are identical in all
orders j < n as above and additionally sg{® = sg/{,
then taking the difference of Egs. (27) we get that
(flnl —frin) . + (ftm) — f'inl) ., must be analytic in
a region contammg the exterlor region and horizon
of the Schwarzschild metric g(0). By a direct cal-
culation!?9 this in turn implies that (f[") — f;["]) must
be analytic in this region, i.e., given g(") and all g,
F(3) and fUi1 with j <=, fI#] is uniquely determined
up to the addition of a function which is analytic in a
region containing the domain of outer communica-
tions and horizon of the Schwarzschild manifold.

Agﬂ/n] — Kg,j,ﬂ”)

Thus, freedom in choosmg the nth-order quantities
is qu1te limited: g must be of the form (17) and
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F@ must be of the form (19). With g(1 chosen, f[1I
is determined up to the addition of an analytic func-
tion. With g, F and fI1 chosen, g(® is deter-
mined uniquely up to the addition of a tensor of the
form (17) and F(? is determined uniquely up to the
addition of a tensor of the form (19), etc. We now
claim that the arbitrariness which does exist stems
only from coordinate arbitrariness and, in the illus-
trative terminology of Fig. 1, freedom of choice of
path and path parameter in the “Kerr—-Newman disc”,
i.e., we claim that g(a), F(a) must be a family of
Kerr~Newman space—times. Specifically, the arbi-
trariness of fI7] arises from the freedom of choice
of analytic coordinates z*;the arbitrariness ¢, +
£,;, of (17) arises from freedom of choice of the x*
coordinates; the freedom of the parameters C,, and
Cy, of (17) may also be attributed to the x* coordi-
nate freedom (namely, the choice of Z-axis); the free-
dom of C, and Cy, of (17) and C of (19) arises, re-
spectively, from the freedom of choosing m(a), a(a),
and e(a), i.e., the path in the “Kerr—-Newman disc.”
We will show that an arbitrary one-parameter analy-
tic family g(a), F (o) satisfying (I)-(V) is composed
of only Kerr—Newman solutions by constructing all
possible families g (@), F (o) of Kerr~Newman solu-
tions and showing that g(@), F (@) must coincide with
some g (a), F (a).

To construct an arbitrary Kerr—Newman family
gxla), F (a), we start with the Kerr—Newman solu-
tion, Eqgs. (3), (4), noting that the Kerr—Newman
metric is of the form

ds? = (Schwarzschild metric of mass m) — 2maT,,
+ (terms quadratic or higher order in ¢ and e),
(28)

where T, is defined by Eq. (18). Next, we perform
an arbitrary rotation. Noting that Ty,,7y,,T;,
transforms as a vector under rotations since
~(Ty, +iT1,)/2, Ty,,and (Ty, —iT,)/22arel =1
magnetic parlty tensor spherical harmomcs 13 we
get that the metric in the new coordinates is of the
form

ds? = (Schwarzschild metric of mass m)
—2ma(l, T, + 1,Ty, + 1,T¢,)
+ (terms quadratic or higher order in a and e)
(29)

where [,,1,,1, are the d1rect10n cosines of the old z
axis. We write a, = al,, a, =al,, a, = al, and re-
place a where 1t occurs 1n the hlgher order terms by
(@2 + a3 + a2)1/2, Next, we replace m 18y Ay, a5, €,
by arb1trary analytlc functions m(a), a, (@), a (a)

a,(a), e(a), with m(0) = m,, a,(0) = (0) —a L(0) =
e(O) =0,i.e.,

[ee]
mgy + Z) c<n> e@) = 2 L ¢,
n=1 n'

b

mla) =

o0 )
a, @)= & Lcw  ae=2 Loy, (30)
n=1 n! n=1n!

aﬂ
=5 ot
where C{,C,CM, C,CM are arbitrary con-

stants (such that these series converge). Next, we
make an arbitrary coordinate transformation of the



KERR-NEWMAN BLACK HOLES 497

Schwarzschild-like coordinates x# — x'" expressed
as x! = x'* + &i(a, x'B), subject only to the conditions
that {#(o) preserve the Killing vector 3/3/ and the
asymptotic properties of the metric as » — %, and
that &t (@ = 0) = 0.

Finally, we make an arbitrary analytic in o and z
coordinate transformation of the analytic coordi-
nates45 associated with the Kerr—-Newman space—
time to get new analytic coordinates z’#, related to
the old ones by 2! = z'* + y*{a, z'8), where y* is an
arbitrary analytic function of @ and 2’8 for z’? in a
region containing the domain of outer communica-
tions and the horizon of g(w), with ¥#(a = 0) = 0.

Each family g, (@), F (@) constructed as above is
composed of only Kerr~Newman solutions and satis-
fies properties (I)—(V). It is also not difficult to
verify that the first order quantities g{! and F{P are
of the form

P =201y — 2my (CHT,, + COT
+OQT) D+ B, 6D

vepo
FW = (2C W /y2)dy A dt. (32)

Thus, g{? is just of the form (17) and F{ is of the
form (19). Following the same reasoning as em-
ployed in the discussion of the “higher-order equa-
tions principle” (see Appendix A), it is easy to see
that g and F{ are of the form

g =20 PTy — 2my (€ PT, + CHT, +CPT, )
+£0 + £ + (lower-order terms), (33)

F@® = (2cM/r2)dr A dt + (lower-order terms), (34)

where “lower-order terms” means terms involving
only ¢ (), Cr(nj),cg‘jr)?cfzjy)’cg'?z)’ cgj) with j < n.

We now prove the following statement by induction:
Given an arbitrary one-parameter analytic family
gla), F (a) satisfying properties (I)-(V) [and hence
(C1)-(C4)], for eachn there is a g, (@), F (@) such
that for allj = n, g () =g FU) = F£), and

ful = /1. Namely, for n = 1, the lemmas of Sec.IV
directly show that £ (*) must be of the form (17) and
FM must be of the form (19). From (31) and (32) it
is clear that we can find a gx and Fy (by appropriate-
ly g)icking cP,c,cW, c), e, £(V) with g =
gW and F§{Y = F(, Also, having obtained g{V = gD,
fU and any f[1 associated with g{ can differ at
most by an analytic function; our freedom in choosing
yl1l ensures that we can get f}1) = f[1. Similarly,
assuming there is a gg(a), F (o) such that gli) =
883, FU) = F{9) and fUil = £Jil for all j = n, we
have already shown that the differences (g+D —
£y and (F&+D — p @) must, respectively, be of
the form (17) and (19). But from (33) and (34) it is
clear that we can suitably choose C{#+D, C{n+D),
CiD) D, D g1 (leaving lower orders un-
changed) to get a g, (@), Fp(a) with g{) = g() and
F$i) = F() for all j = n + 1. Similarly, the freedom
of choice of y(»*!] allows us to get fL#*1] = fln+1]
without affecting the lower orders.

Thus, given a one-parameter family g(a), F(a) which
satisfies properties (I)-(V), we can find a g, (@),
F(a) which agrees with g(a), F(a) to arbitrarily

high order. This implies that g(a), F(a) itself must
be a family of Kerr-Newman solutions. To see this,
we argue as follows: Given an arbitrary one-para-
meter analytic family g(a), F(a), for each n we can
define £¢(,c,cm,Cc,CM,CW and yi» from the
form of the Kerr-Newman family g, (o), F . (@) which
agrees with g(azéF(a) to order n. We define20

m(a) = mgy + 30 1 CW (an/n1), etc. Then, by rever-
sing the steps performed in constructing the family
gygla), F (a),it is clear that for any o, we can bring
g(og), F(ag) into the standard Kerr—Newman form
(3) and (4) by coordinate transformations and para-
meter substitutions. Thus, g(a), F(a) is a family of
Kerr—-Newman solutions, which completes the proof
of the theorem.

Note that the theorem treats electrovac black holes,
i.e., only electromagnetic fields are allowed to be
present. However, the theorem may be generalized
without difficulty to allow for the possible presence
of other types of fields provided that there exist no
well behaved, static, test fields of these types in the
Schwarzschild background. The analysis of Beken-
stein2! shows that this is the case for scalar fields
and nonzero mass vector fields. Hence, the Kerr-
Newman space—times (which have only electromag-
netic fields) remain the only black hole solutions
which are analytically developable from the Schwarzs-
child solution even if the possible presence of these
other fields is not excluded a priori.

APPENDIX A: HIGHER-ORDER EQUATIONS
PRINCIPLE

Consider a set of quantities U (a) (e.g., 58,,, °F .,
and their x derivatives) which are » times differen-
tiable with respect to the parameter o and satisfy an
equation

E(,(a)) =0, (A1)

where E is an n times differentiable function of the
U, which has no explicit @ dependence. The & deriva-
tives
arl . (a
U = ————~1( )
4 dan a=0

are called nth order quantities and the equation
obtained by differentiating (Al) » times with respect
to o at @ = 0 is called the nth-order equation.
The first-order equation is, thus,

IE dU, o

55; o =0 (A2)

which is linear and homogeneous in the first-order
quantities.

Highey-order equalions principle: The nth-order
equation involves nth-order quantities in precisely
the same manner as the first-order equation involves
first-order quantities, i.e., the nth-order equation is
of the form

3E drvu,
55; dan

= (terms of lower order thann), (A3)

where “terms of lower order than »” means terms
involving only combinations of the Ui(f ) with § < n.
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Proof (by inductlion): The statement is trivial for
n = 1. Assume the statement is true forn =4, i.e.,
that
E d*tu;

6~Ui da* (a4)

= (terms of lower order than %).

The (& + 1)th-order equation is obtained by differen-
tiating the Ath-order equation one more time with
respect to @ at o = 0. Hence, the (¢ + 1)th-order
equation is

82E dv, d*y,

ov.0U, da dak
A d
=7 {terms of lower order than k),

3E d*ly,
E do #+1

(A5)

which is of the form
E d*ly,

T daR = [terms of lower order than (¢ + 1)].
’ (A6)

This completes the proof,

[Another way of seeing this result is to note that nth-
order quantities appear in nth-order equations only
linearly and in combination with zeroth order quan-
tities (since other combinations are of higher order).
It is not difficult to convince oneself that this com-
bination of nth- and zeroth-order quantities must be
independent of =, ]

APPENDIX B: VISHVESHWARA'S PERTURBATION
ANALYSIS

We briefly outline here the pertinent results of Vish-
veshwaral4 and provide the steps necessary to bring
his results into the form of Lemma 1.

Consider the linearized Einstein field equations in the
Schwarzschild background, which we have denoted as
[(see Eq. (7))

Suu(h) =0.

Since the Schwarzschild metric is spherically sym-
metric, the operator G, , must be rotationally in-
variant. Therefore, in the same manner and for the
same reasons as one expands scalar functions occur-
ring in rotationally invariant problems in ordinary
spherical harmonics Y,,, (¢, ¢) and vector functions
occurring in rotationally invariant problems in vector
spherical harmonics, we expand Sk, in tensor
spherical harmonics.13 We obtain from (B1) equations
for the expansion coefficients, which in general are
functions of r and ¢. These equations were first
obtained by Regge and Wheeler!2 after making a
choice of gauge which considerably simplified the
problem. A number of errors appeared in the equa-

(B1)

tions given by Regge and Wheeler, but a corrected
set of equations has been given by Edelstein and
Vishveshwara.15

For the case in which we are interested, namely sk,
not a function of ¢, the equations simplify and reduce
to a single ordinary differential equation in » for
each “angular momentum” I and parity type. For

1= 2,Vishveshwaral4 has shown that the Kruskal
components of the solution of the radial equation
which is well behaved as 7 > © must blow up as

¥ — 2m, and that this bad behavior cannot be
remedied by a gauge transformation. Note that Vish-
veshwara only considers axially symmetric pertur-
bations in his paper, but the equations depend only on
1, not the “magnetic quantum number” M so that the
above result holds for arbitrary perturbations with
1Z 2.

On the other hand, with 7 = 0, 1 there are stationary
perturbations which are well behaved. With a suit-
able choice of gauge, these perturbations may be
written

1=0, Shy, = CoTy (B2a).

I =1 (“electric”), sh,, =0, (B2b)

! =1 (“magnetic”), sh,, =C,Ty, +C T,
+cC,T,, (B20)

where Cy,C,,C,,C, are arbitrary constants and T,
Ty,,Ty,, T, are defined by Eq. (18). [Physically,
the I =0 (spherically symmetric) perturbation
generates a change in mass. The I = 1, “electric”
perturbation generates a shift in the center of mass
and can thus be eliminated by a gauge transforma-
tion.13 The I = 1, “magnetic” perturbation generates
a change in angular momentum. ]

Thus, in our chosen gauge the most general time-in-
dependent solution of {B1) which is well behaved as
v — © and is such that its Kruskal components plus
a gauge transformation remain finite as » — 2m is
just

Shy, =CoTo +C, Ty, +C. Ty, +C,Ty,. (B3)
It is clear that if we “unfix” our gauge, we find that
the general solution of (B1) satisfying the above con-
ditions is
Shy, = CoTo + C, Ty, +CTy, +C Ty, + £, + £,

(B4)

where £F is a gauge transformation which is indepen-
dent of £ and preserves the good asymptotic behavior
of Sk, as 7 > % but is otherwise arbitrary. This

is precisely the statement of Lemma 1 given in
Sec.IV.
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analytic in w® and w! in a region containing the exterior region
and horizon of g(0). [In terms of the Schwarzschild radial coor-
dinate, 7, A = (32m/») exp(— »/2m).] This implies analyticity of
Y4,V and hence of f, and f,. With this established it is easy to
verify that f, and f, must also be analytic.

The series for m{a) must converge because the series for g{a)
converges (by hypothesis) and g{o) must have finite mass. Simi-
larly, the series for a,{a) and e(o) must converge. For the case
of £,(a) one can show that the effect of the sequence of coordi-
nate transformations J i1 F,M(”)a"/n L, =1,2...),0ng)
must converge, but this does not imply in an immediately obvious
fashion that the series itself must converge and, in fact, the re-
mote possibility that it does not converge has not as yet been
rigorously ruled out.

21 J, Bekenstein {to be published).
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The causal Meyer—Suura structure functions are projected into irreducible representations of the Lorentz
group. A clarification of the connection between light-cone singularities and Lorentz poles is obtained: We
find that in general a light-cone singularity of the type 1/(— 2 + fex,)%, in the operator product of the hadronic
electromagnetic current, is built up from a sequence of Lorentz poles at A, =1 + o — 7 whose residues are
polynomials of order » in the virtual photon square mass.

1. INTRODUCTION

In this paper we study the connection between scaling
properties (light-cone singularities) and Regge—like
behavior (J-plane singularities) of the off-mass-shell
Compton amplitude. Recently many authors! suggest-
ed that presence of light-cone singularities in the
commutator of the hadronic electromagnetic current,
which are responsible for the scaling properties of
the structure functions in the Bjorken limit, could
imply the existence of fixed poles in the off-mass-
shell forward Compton amplitude. To study this
phenomenon, it is necessary to develop the harmonic
analysis with respect to the Lorentz group in configu-
ration space, showing explicitly how Lorentz poles
contribute to build up light-cone singularities.

In Ref, 2 the Wick~rotated imaginary part of the off-
mass-shell forward Compton amplitude has been sub-
jected to an O{4) analysis and the connection between
its Lorentz.pole content and light-cone singularities
has been investigated by performing a Sommerfeld-
Watson transform. The authors were able to relate
the behavior of the O(4) partial waves at small dis-
tances to the scaling properties of the Comptonampli-
tude. These techniques were used to study a wide
class of light-cone singularities suggested by ladder
models,

In this work we discuss two kinds of expansion of the
Compton amplitude; the first one, which is relevant
in the Bjorken limit, is given by an integral over all
possible light-cone singularities. This expansion is
more transparent in momentum space where it
appears as an expansion in terms of homogeneous
functions of the variables ¢2, v, i.e., over irreducible
representations of the group of projective transfor-
mations on the complex variables ¢2, ».3 The second
one, relevant in the Regge limit, is obtained by pro-

jecting over the irreducible representations of the
Lorentz group.

We find in general that an infinite number of Lorentz
poles “conspire” to build up a light-cone singularity,
more precisely, a term like 1/(— 22 + iex,)® related
to the sequence of Lorentz poles which are located at
A, =1+ a —n and whose residues are polynomials
of order # in the virtual photon mass. The possible
nonpolynomiality of the residues should be interpret-
ed as an indication that an infinite sequence of light-
cone singularities contribute in Regge limit.

We point out that these poles have nothing to do with
conventional Regge poles, i.e., with the behavior of the
“structure functions” f;(x‘p) in configuration space
for large x*p, but have a pure kinematical origin, in
the gsense that they reflect the presence of a “power
type” singularity (x2) = of the current commutator
near the light cone, In particular, if these poles

occur at integer points, because of the Regge signature
factor, they cannot contribute to the imaginary part

of the off-mass~shell Compton amplitude., However
they do contribute for nonintegral values, so these
singularities could be physically relevant as a mani-
festation of noncanonical light-cone singularities,

As is well known, such singularities would correspond
to renormalization effects of dimension in the opera-
tor product of the two currents.

Finally we remark that the techniques we develop may
also be useful for studying dynamical situations sug-
gested by some ladder models, in which these kinds

of singularities are realized.

Sections 2 and 3 are devoted to studying the pro-
perties of the integral transforms we are led to in-
troduce in order to derive the previously mentioned
results. In particular the connection of the expan-
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converges (by hypothesis) and g{o) must have finite mass. Simi-
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of £,(a) one can show that the effect of the sequence of coordi-
nate transformations J i1 F,M(”)a"/n L, =1,2...),0ng)
must converge, but this does not imply in an immediately obvious
fashion that the series itself must converge and, in fact, the re-
mote possibility that it does not converge has not as yet been
rigorously ruled out.

21 J, Bekenstein {to be published).

2

(<]

Light-Cone Singularities and Lorentz Poles

S.Ferrara
Laboyatori Nazionali del CNEN, Frascali, ltaly

and

G.Rossi*
Istituio di Fisica dell 'Universilt, Roma, and Islitulo di Fisica dell'Univervsita, L'Aquila, Ilaly
{Received 8 October 1971)

The causal Meyer—Suura structure functions are projected into irreducible representations of the Lorentz
group. A clarification of the connection between light-cone singularities and Lorentz poles is obtained: We
find that in general a light-cone singularity of the type 1/(— 2 + fex,)%, in the operator product of the hadronic
electromagnetic current, is built up from a sequence of Lorentz poles at A, =1 + o — 7 whose residues are
polynomials of order » in the virtual photon square mass.

1. INTRODUCTION

In this paper we study the connection between scaling
properties (light-cone singularities) and Regge—like
behavior (J-plane singularities) of the off-mass-shell
Compton amplitude. Recently many authors! suggest-
ed that presence of light-cone singularities in the
commutator of the hadronic electromagnetic current,
which are responsible for the scaling properties of
the structure functions in the Bjorken limit, could
imply the existence of fixed poles in the off-mass-
shell forward Compton amplitude. To study this
phenomenon, it is necessary to develop the harmonic
analysis with respect to the Lorentz group in configu-
ration space, showing explicitly how Lorentz poles
contribute to build up light-cone singularities.

In Ref, 2 the Wick~rotated imaginary part of the off-
mass-shell forward Compton amplitude has been sub-
jected to an O{4) analysis and the connection between
its Lorentz.pole content and light-cone singularities
has been investigated by performing a Sommerfeld-
Watson transform. The authors were able to relate
the behavior of the O(4) partial waves at small dis-
tances to the scaling properties of the Comptonampli-
tude. These techniques were used to study a wide
class of light-cone singularities suggested by ladder
models,

In this work we discuss two kinds of expansion of the
Compton amplitude; the first one, which is relevant
in the Bjorken limit, is given by an integral over all
possible light-cone singularities. This expansion is
more transparent in momentum space where it
appears as an expansion in terms of homogeneous
functions of the variables ¢2, v, i.e., over irreducible
representations of the group of projective transfor-
mations on the complex variables ¢2, ».3 The second
one, relevant in the Regge limit, is obtained by pro-

jecting over the irreducible representations of the
Lorentz group.

We find in general that an infinite number of Lorentz
poles “conspire” to build up a light-cone singularity,
more precisely, a term like 1/(— 22 + iex,)® related
to the sequence of Lorentz poles which are located at
A, =1+ a —n and whose residues are polynomials
of order # in the virtual photon mass. The possible
nonpolynomiality of the residues should be interpret-
ed as an indication that an infinite sequence of light-
cone singularities contribute in Regge limit.

We point out that these poles have nothing to do with
conventional Regge poles, i.e., with the behavior of the
“structure functions” f;(x‘p) in configuration space
for large x*p, but have a pure kinematical origin, in
the gsense that they reflect the presence of a “power
type” singularity (x2) = of the current commutator
near the light cone, In particular, if these poles

occur at integer points, because of the Regge signature
factor, they cannot contribute to the imaginary part

of the off-mass~shell Compton amplitude., However
they do contribute for nonintegral values, so these
singularities could be physically relevant as a mani-
festation of noncanonical light-cone singularities,

As is well known, such singularities would correspond
to renormalization effects of dimension in the opera-
tor product of the two currents.

Finally we remark that the techniques we develop may
also be useful for studying dynamical situations sug-
gested by some ladder models, in which these kinds

of singularities are realized.

Sections 2 and 3 are devoted to studying the pro-
perties of the integral transforms we are led to in-
troduce in order to derive the previously mentioned
results. In particular the connection of the expan-
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sions in momentum and configuration space (related
by a Fourier transform) is given. In Sec. 4 the de-
composition of a light-cone singularity in terms of
Lorentz poles is carried out. The proofs of the main
formulas we use are collected in the Appendix.

2. CONFORMAL TRANSFORM

Let us consider the functions?
Vi@g?, v) = A/ Wy (g2, v) + (BB/q?)Wy(q2, V)], (2.1)
Vz(qZ; V) = (l/qz)Wz(QZ, V)7 (2~ 2)

linear combinations of the structure functions
Wy (g2, v), Wy(q2, v) defined by the equations

1 —1g-x e e
W“D(Q,P)zm Jatxeriax(pl[ge(x), J£2(0)]1p)

q,4 v
o BB 0+ (5~ )

v
X <p,, - q_z 61,,) Wz(qz, V),

(2.3)

where Jﬂel(x) is the hadronic electromagnetic current.
For the Fourier transforms (k =1, 2)
WF(x2,x:p) = [diqeie=W, (g2, v),

. (2.4
VE(x2,x-p) = [diqeie=VE(g?, v), )

the following relations hold:
W{‘(xzy xP) =-0 Vf(ng xp) - BJIJU aanVZF(xZ, xp)a
WyF (32, x-p) =0 Vo (2, x- p). (2.5)

Experimental data suggest the following asymptotic
behavior:

lim Vi (g2, v) ~ vo#2F (w)

v oo

(2. 6)

w=-g2/2v fixed
with oy =1, a; =0,

A typical contribution v*2F(w) (we shall omit the
index k from now on) to the structure functions in
the Bjorken limit corresponds in the Fourier trans-
form to a term of the type [x2] - f(x- p) near the light
cone (where we indicate by the symbol [ x2] -« the
discontinuity of 1/(— x2 + {0)«), The scaling be-
havior in momentum space has an interesting geo-
metrical interpretation. Let us consider a function
V{g2, v) defined on the (four-dimensional) complex
affine plane ¢2, v. This space is homogeneous with
respect to the group SL(2, C) of projective trans-
formations, i.e., it is equivalent to the quotient space
SL(2, C)/ Z where Z is the group of matrices of the
form (3 #). A representation of this group is defined
on these functions as follows5:

T,V (g2, v) = V(ag? + yv,Bg? + 6v), .7
where g = (‘; 8) with a6 — gy = 1.
We observe that the homogeneous functions play a

special role in this space, as they form an irredu-
cible subspace for the representation, The theory of
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harmonic analysis on homogeneous spaces gives the
following expansion formula:

+ 00

Vig?,v) =

ico
I davig?, yna),  (2.8)
QO

(2m)2i  n=—e0 -

where n; = (n + @)/2, ny = (—n + «)/2,and V(q?,
v; n, @) is the Mellin transform of V(q2, v) defined
as follows:

V(g2, v;n, @) = & [dnaim 0 2 V(ng2,mv).  (2.9)
Equation (2. 8) is only valid for L2 functions, while
Eq. (2. 9) can be used to analytically continue the
Mellin transform in « so that, for non-square-sum-
mable functions the expansion formula reads

+ o0

2 — 2 -
V(g2, v) (ZN)zin:E_w{ davV(g?, vn,a), (2.10)

where C is a suitable path in the complex « plane,

If we introduce the Fourier transform as
VF(x2,u) = [ digeis=V(g?,v), u=xp, (2.11)

then from the previous analysis we obtain in con-
figuration space the expansion formula

1
T (2m)2i

VE(42, u)
where
vi® wy =4 fanaim"i v

; fcdaVF(xz,u; n,a), (2.12)
T2, w0, (2.13)
If we perform the sum over n, we get

1 A
VE(x2,u) = o S daVE(:2, w5 ), (2.14)

with the definition

QF(xz, u; o) = fow di oL VF(ix2, u), (2.15)

Using the causality of the Fourier-transformed struc-
ture functions, we can write

VF(x2,u) = 571; fc daf 2] % f (u; o), (2.16)

where we have introduced the “conformal transform”-
of VF(x2,u):

1 ©
. = — ——— d o(l‘lVF u 2. 17
f(u, o ) 27 sinna fO o (O’, ) ( )
and
[x2]e = disc [1/(— 42 + i0)°] = — 2i sinTa(x2)-e,

We have called the transform defined by Eq. (2.17)
“conformal transform” to emphasize that a term like
[x2]-¢f (xp; @) is related in the corresponding light-
cone operatorial expansions to an infinite set of ten-
sor operators Oal, . _an(O) classified according to a
ladder of irreducible representations of the confor-
mal algebra whose spectrum is given by the eigen-
values of the nonvanishing Casimir operator:

2M,, M + 2P, *K* — 2D? + 8iD
=4n(n — a — 1)+ 202 — 8,
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and M s+ Py, Ky, D are the generators of the con-
formal algebra 6

In momentum space we can write the expansion

V(g?, v) (2.18)

where the scaling function is expressed in terms of
the conformal transform f(u; o) as

1
=— | dav*?2F(w; a),
a7 Jo dav (e )

2 smna
T(a) (2.19)

To obtain the complete diagonalization of the ex-
pansions (2. 16), (2. 18), we define the Mellin trans-
form with respect to the u variable of f(u; a);

Flw,a) = 9-¢ gmina/

(29)2

flo,7) = J duumif (5 0), (2. 20)
so in configuration space we have
1 C+io
2 = e———— da 3 dr x2 oy T (aaT)a
V(x ,u) (27”)2 fc fC-zGO [ ] f (2’ 21)

and in momentum space

1 C+ioo B s, .
V(q2 ) — W Cda jC-ioo dr22-2a ¢ ita/2 p-imi/2
x SITQ £ o o 1) @) 2wif(a, 1), (2.22)
r(a)
where we have used the relation
Flw. a) = 2-a g-ino/2 M w2
o =m 2" T
Crioo
xJ. FCaretn 2 T @ —a - DTf(e, D, (2.23)
-i 0

3. LORENTZ AND WEYL TRANSFORMS

In this section we will expand the amplitude in confi-
guration space directly into irreducible representa-
tions of the Lorentz group. The complete diagonaliza-
tion will be obtained inthis case by means of the Weyl
transform which is defined as the product of the
Lorentz and Mellin transform in the x2 variable.
These transforms obviously commute, We start by
projecting out the dependence of V7(x2, coshf ) =
VF(x2, xp) on coshl, = (xp)/va2 by performlng the
usual Lorentz transform7

fooo VE(x2, cosht,) D, (cosht ) sinh2¢ dt, = VF(x2)
(3.1)
as defined by Eq. (Al).

The Plancherel theorem gives
~ j i -
VF(x2, coshg, ) =ﬂi f_: dM2ZVF(x2)D_, (coshﬁx)23 .

where the path has to be suitably shifted for non- L2
functions. Possible behaviors of the Lorentz trans-
form V¥ (x2) were studied in Ref. 2 in connection
with simple structures suggested by ladder models.
The corresponding expansion in momentum space is
obtained, by computing the Lorentz transform of the
Fourier kernel e7¢9* [see Eq. (A5)], by means of the
formula

~ K,(RV—q2) .
V,(¢?) = de R3 “R%(J;quv) F(R2), (3.3)
—q

f du etvrul-of (u; a).

where K, (x) is a modified Bessel function of thirdkind
(Hankel functlon) and R = vx2. The inversion for-
mula reads

V(g2,v) = 4mi [ d2T, () G, (v, ¢?), (3.4)
where @,(v, ¢?) is a second kind matrix element on
the Lorentz group defined by Eq. (A7). We note that
the partial wave V,(¢%) defined by Eq. (3. 3) could in
principle have A singularities originated by the
Hankel function. This phenomenon is more trans-
parent if we perform the complete diagonalization by
means of the Mellin transform in the variabie x2. We
define the Weyl transform as

VE = I/ VF(x2, cosht ) D, (coshg,)

X sinh2¢ df (x2)rldx2 (3.5)
according to Eq. (A9), We call it a Weyl transform
since it performs the diagonalization with respect to
irreducible representations of the Weyl group. The
inversion formula is given by

VF(x2, cosht,)

1 ¥ o~
=53 S a2 [dp(x2)» D, (cosht,)VE  (3.6)
and in momentum space, via Eq. (A12), we have
Vig?, v) 2% Jax fapr222er (3x—p + 3)
X T 2—p+3) (- g2 60, @)V, (3.7)

We observe that the paths of integration in the A and
p planes are along the imaginary axis for L? func-
tions and they have to be suitably shifted for non-L2
functions,

The Weyl transform is simply connected to the con-
formal transform introduced in the previous section.
To see this, we start by rewriting Eq. (2. 21) as

V{x2, u) ~(2 P [ [dadd x2]-

(cosht, )2 o-2f(a, 2p — 2a) (3.8)
after the change of variable v = 2p — 2¢. This con-
nection clarifies thekinematical origin of the Lorentz-
pole content of a light-cone contribution; this will be
shown explicitly in the next section,

4. DECOMPOSITION OF A LIGHT-CONE SINGU-
LARITY INTO LORENTZ POLE CONTRIBUTIONS

In this section we want to investigate the connection
between the two integral representations for the
causal structure functions VF(x2, u), (2.21) and (3.6)
[and their related momentum space versions (2. 23)
and (3. 7)]. If we remember the structure of the Eq,
(3. 8), we see that the transformation function which
relates the two expansions is nothing but the Lorentz
transform of the power (cosh¢ )2r=2¢, Its Lorentz
transform is given by Eq. (A13). So we have in terms
of irreducible Lorentz representations,

22p~2a-1

(2 I'2p — 2a)
x fla, 2p — 2a)r(z A—3+p—a)

X IT(—4x—3% +p—a){x2]»D, (coshi,)

VF(x2, cosht,) =

4.1)
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and in momentum space, by means of Fourier trans-
form,

(2:)22, [ dcdparx 2
x f(a, 2p — 2a)(— 2{ sinra)
XT((Ax—3+p—a)T(—31—%+p—a)
XT(3rx—p+ 2)T{— 32 —p + 3)—q2)~2 @, (v,q2)
(4.2)

Comparing Egs. (3.7) and (4. 2), we have the connec-
tion between the two previously introduced conformal
and Weyl transforms:

2-2a

2 ) = e
Vg, v) TCp— 2a)

jr =1 22072

rZx—
N = a7 (z

4o ———— 3tp—
J (20 — 20) 2t o—al
X T(=3x—3%+p—a)a,2p—2a)(—2isinra).

(4.3)

This result clearly means that a Weyl contribution is
in general built up from an infinite sequence of light-
cone singularities. In order to study the matching
between light-cone singularities and Lorentz poles,
we change the order of integration in the integral
representation (4. 2) and perform the A-integration
explicitly by means of Cauchy's theorem. We get

2-2a

V(g?, v) = Z\f} 1 [ [dadp Akl
20 T (n—1)! T(2p — 2a)

X (— 27 sinma) f(@,2p — 2a)T(2p — 20 —1 + n)
XT(—a+1+ n)l(e —20+2—n)
X (20— 20 — 1+ 20)2(— g2)P2 @y g0 gy, (¥ @)
+ i lffdcydp bl 2
n=0 T (n—1) I(2p — 2a)
X fla,2p —2a)T(—a +1 + n)
XT{—a +2p—2—n)T(—2p +3 + n)
X (—2p 3+ 212 (— ¢2)P2 Gy 300, (v, ¢%),

(— 27 sinna)

(4. 4)

where we have taken the contribution of the Lorentz
polesat A =2p—2a—1+2n, A=—2p +3 + 2n and
closed the integration path in the right half-plane,
where the functions G, (v, ¢2) go to zero.

To see the Lorentz pole content of a light-cone con-
tribution, we assume that the p integration can be per-
formed by an appropriate deformation of the integra-
tion path in such a way that the Mellin transform is
analytic in the corresponding region of the p plane.
This corresponds, in Regge pole language, to consider-
ing the Compton amplitude with true Regge poles sub-
tracted.l Note that a conventional Regge pole would
correspond to a pole in the Mellin transform and
would give rise to a different behavior in g2 of the
residue function,

Performing the integral, we get

0 (—1p1 (—1)m1
2 —_
Vig®, v) = n%}:o 4fde (n— 1) (m—1)
2-2a ginna

X a, —a +2—n+m
I'—a +2—n+m)f( )
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XT(—~a+1+al(—a+1+m)
X{—a+1+n+m?2(— q2)le2mnmy2]-2
(— 1t
(n—1)

0
X a-a+1+n+m (V’ q2) + E

n,m=0

4 [da

N (—1)m1 222 ging@

m=—1)I'T'~a+2+n—m)

Xfla, —a+2+n—m)T(—a+1+n)
XT{—a+1+m)—a+1+n+m)?

X (— qZ)[(a+2+n-m)/2]-2 G’-oc+1+n+m(yf qZ)’ (4.5)

where we have taken the contributions of the poles at
p=(—a+2—n+m)/2,p=(2+a +n—m)/2in
the first and second integral of (4. 5), respectively.
The integral has been closed in such a way that the
background goes to zero by moving the integration
path at infinity,

Formula (4. 5) can be rewritten as

w —a+2—n+
Vg2, v) = 9, 4fdoz flo, —a +2—n+m)
7,m=0 I(—a+2—n +m)
) ~ (_ l)n-l
X (= g2)la2ntmy21-2 4 24y
(n—1)

(—1)m?
(m — 1)
XT(—a+1+m)—a+1+n+m)?

X G’—a*lm‘m (V, qz )'

22a gingal(—a + 1 + m)

(4. 6)

To see the behavior of a light-cone singularity, we
pick up a contribution to the integrand in (4. 6). In the
Regge limit we have
2 (e, —a +2—n+mn
Z _4 f( 1)

I'—a +2—n+m)

Volg?, v) =
v—=>c0 n,m=0

(- 1y (1)
(n—1)1 (m—1)!

X(—g?)m +nz m>

x 22aginfal(—a +1 + n)
XT(—a+1+m)—a+1+nt+m)

4.7)

where we have used the asymptotic behavior of the
functions @, (v, ¢2) defined in Eq. (A7). In particular
we observe that the I' functions exactly cancel each
other for @ = negative integer, corresponding to the
case of a derivative of a § singularity on the light-
cone. In particular the leading pole corresponding
to the a-light-cone singularity goes as

X gir(2~atnrm)/2 ya~2-n-m

V(g?, v) ~ const cpa2 (4.8)

UV o0
with residue independent of g%. In general the residue
of the »nth nonleading poles is a polynomial in ¢2 of
order n. These results establish that a light-cone
singularity (x2) ¢ in the current commutator corre-
sponds to a sequence of poles at J,, = @ —n whose
residues are polynomial of order # in the photon
square mass,
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APPENDIX

In this appendix we recall some formula which we

need in the text. We start by recalling that the

causal structure function VF(x2,x-p) = VF(x2, cosht,)

(cost, = x- -p/VxZ) can be considered, for fixed x2,

as a bicovariant function® defined over SL(2, C) (the

_ universal covering group of the Lorentz group). This
means that it is a function V(x2, a),a € SL(2, C), which

satisfies the covariance relatmn V(x2 a) =

V(x2, hyahy) for hy, h, € SU(2). Its Lorentz trans-

form is given by the formula

F(x2 0
fsuz‘é)(x A)DdBoo(@)

X D,(cosht,) sinh2¢ df = 47T3V)\F(x2),

a)da = 4113r VF(x2, cosh{x)

(A1)
where

D,(cosht,) = d§},(cosht,) = (sinhag,)/(x sinth)(

A
is a matrix element of an irreducible representation
of the type (0, ). This function is called an element-
ary spherical harmonic of SL(2, C). The Plancherel
theorem gives

V#(x2, cosht ) = —f szVF(xz)iD J(cosht,) (A3)
for functions L2 over SL(2, C). For non-L2 functions
the integration path must be suitably shifted.
Computation of the Lorentz transform of the inverse
Fourier transform

Vg2, v) = [ e-ia-*VF(x2, x"p)d4x (A4)

requires the knowledge of the Lorentz transform of
the Fourier kernel ¢~ta-*, This has been evaluated in
Ref. 9, and we get

e *Dgyo0(a)dba

= 272(1/RV— ¢2)K, (RV—q?) D,

(v,q%), (A5)

where K, (x) is a modified Bessel function of third
kind10 and

D,(v, 42) = dfho(v /Vg?) (A6)
is a matrix element of a (0, \) representation of

SL(2,C) continued to imaginary values of coshC by
means of the formulas

G’x(ya qZ) - a’

1
@—X(Us q2) - X

D,(v,q?) = U ,qz)

(v++vv2 —¢q?)
Vv2 — g2
X (_ q2)(1—)\)/2 eir-N/2, (A7)
At this point we have to make a remark: In principle
the projection of the Fourier kernel e-%¢- %, which
acts from a homogeneous space of the kind SL(2, C)/
SU(2) (x2 > 0) to one of the kind SL(2, C)/SU(1,1)
(g2 < 0) receives contributions also from irreducible
representations of the type (M, 0). Nevertheless, as

explained in Ref, 11, the Plancherel measure in the
inversion formula in momentum space has a support

,¢ Which is the intersection of the supports @, Q,
of t(fle Plancherel measures on the two different
homogeneous spaces so

Q0= 2,09 =(0,0)0N [(0,2) + (M,0)] = (0, ).

We then obtain the Lorentz expansion in g-space in
the form

V(g2 v) = 27 [a2T,(g2)D, (v, ¢2), (A8)
where

= [dR R3{[K,RV—q2))/(RV—q2)} 7F(R2)
and we have used the formula
6(x2)0(x0)d4x = (1/mMR3dRdA3X,

where d3X is the invariant measure over SL(2, C)/
SU(2) and is defined by the formula

d3ud3X = dbq,

d3u, d%a being the Haar measures over SU(2),SL(2,C),
respectively.

We observe that, to obtain complete diagonalization of
the Lorentz expansion, we have to perform the Mellin
transform in the variable R = VxZ, I we define the
Weyl transform as

411317)2\«; = fVF(xz, cosht,)D,(a)(x2)P~1d6a dx?, (A9)

we get
VF(xz,x.p)

Ct+ioo -~
Xf _dp(x2)~rD,(cosht ) VF

C-io0 P (A].O)

and the corresponding expansion in momentum space
is

Vig2, v) =%f dx f dpthFZ 2p(— g2)p-2
A

=100

I‘( —p + Z)F(— 2A —Pp + )iD)\(Vy qz)- (All)

To derive the last equation, we performed the Mellin
transform of the function!? K,(x)

—p +3).
(A12)
Finally we perform the Weyl transform of a light-

cone singularity contribution. This is necessary to
relate the expansions introduced in Secs. 2 and 3.
We get!3
J(1/x2)of (xp, @)D, (a)x2)P2dCadx?
= 2fdx x2020-1 £(x, a)f(costh)ZG’ZPSD)\(a)dea
= m3f(a,—2a + 2p)[2%-2¢/T(2p — 2¢)]
XTA—3+p—o)T(— i —3 + p— o).

J% 2003k () = 2261 T (5 A —p + DT &

(A13)
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The Lie algebra extension problem is investigated and incorporated into a formalism which allows for a Visua-
lization of the algebraic structures involved. A finer analysis than the usual mathematical one is sometimes
required for the physical applications. This brings about the consideration of sliced extensions, i.e., of exten-
sions provided with sections. Some of these, the w-sliced extensions, are particularly interesting. They are
directly connected with natural Levi decompositions of the Lie algebras obtained from extensions. Graphs are
associated with w-sliced extensions. This is especially suitable for the study of irreducible extensions, which
are the basic ones among the extensions. Their structure may be described in terms of graph theory. A sub-
set is picked out from the set of all irreducible extensions of an arbitrary Lie algebra. Its elements, the pri-
mitive extensions, have the simplest extension structure and are characterized by the empty graph or by one-

vertex graphs.

INTRODUCTION

In the past last decade several papers have consider-
ed the group extension problem in physics, following
Michel's nice exposition of the usefulness of group
extensions in quantum mechanics at the Istanbul Sum-
mer School, 1962.1 Some important contributions to
the problem were given by Michel himself, 2~ 5 espe-
cially for extensions of the Poincaré group.

But, already in his paper on continuous unitary repre-
sentations of the Poincaré group,® Wigner had impli-
citly solved a group extension problem, determining
all equivalence classes of analytic central extensions
of the universal covering group of P by U(1). Asis
now well known, there is only one such equivalence
class, that of trivial extensions. This problem was
generalized by Bargmann,? who studied the continuous
unitary projective representations of simply connec-
ted topological groups. For the exceptional case of
Lie groups, Bargmann reduced the group problem to
an equivalent Lie algebra extension problem. As
noted by Galindo,8 this is possible in the case studied
by Bargmann, but not for every analytic group exten-
sion. There are extensions of the Lie algebra of an
analytic group (i.e., 2 connected Lie group) which do
not induce corresponding analytic group extensions.
Anyway, Lie algebra extensions can be of much help
in the study of analytic group extensions, since no
topological difficulties are involved, and they give a
good deal of information for the solution of the latter
problem.? Galindo studied some Lie algebra exten-
sions of the Poincaré algebra and his study was pur-
sued in Refs. 10 and 11,

The purpose of this paper is the study of Lie algebra
extensions in a constructive way. As physicists are
interested in the determination of some Lie algebra
extensions, we look for the tools in order to accom-
plish this task. We derive some conditions which
must be satisfied by the considered extensions, and
give a procedure for the construction. In Paper I we
formulate general results, valid for any Lie algebra
extension, and we analyze more extensively the case
of some types of Lie algebras which frequently ap-
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pear in physical problems. Inthe Paper Il we will illu-~
strate the results of the present paper in the case of
the Lie algebras of the Euclidean, Galilean, and Poin-
caré groups.

Following Calabi, 12 we introduce in Sec. 1 the idea of
sliced extension,13 and examine the physical meaning
of this definition. The fundamental problems of Lie
algebra extension theory are then formulated and we
give a procedure for the solution. Given an arbitrary
extension (§,p), we can consider some particularly
important related sliced extensions, the w-sliced ex~
tensions. These give directly information about the
structure of the Lie algebra §. From the set of ex-
tensions of any Lie algebra we pick out the primitive
extensions, which are the basic elements of the set.
They are all extensions by Abelian Lie algebras,

Section 2 is mainly devoted to the study of irreducible
extensions, which form the core of any extension. In
this case, conditions are given which must be satis-
fied by the Lie algebras coming inio the picture. We
associate with an w-sliced extension one graph which
allows for a visualization of these requirements.

The paper ends with two appendices. In Appendix A
we give examples of some peculiarities of the exten-
sions by non-Abelian Lie algebras. A theorem per-
mitting the selection of a useful complete set of 2-
pseudococycles is proved in Appendix B.

Notation And Some Conventions

We consider exclusively vector spaces, modules, and
Lie algebras of finite dimension over a fixed, but
arbitrarily chosen, field F of characteristic 0. This
is tacitly understood throughout the paper.

Capital script letters G, ®, « - - denote Lie algebras,
and the corresponding capital italic characters A,

B, .- . their underlying vector spaces. If ¢ is a
(linear) representation of a Lie algebra G on a vec-
tor space V,then V, is the §-module associated with
¢. The G-module V, (associated with the trivial re-
presentation ¢ = 0) is said to be trivial, and by a
basis of V, we understand a basis of V,_If % is a sub-
set of elements of some vector space, % denotes the
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INTRODUCTION

In the past last decade several papers have consider-
ed the group extension problem in physics, following
Michel's nice exposition of the usefulness of group
extensions in quantum mechanics at the Istanbul Sum-
mer School, 1962.1 Some important contributions to
the problem were given by Michel himself, 2~ 5 espe-
cially for extensions of the Poincaré group.

But, already in his paper on continuous unitary repre-
sentations of the Poincaré group,® Wigner had impli-
citly solved a group extension problem, determining
all equivalence classes of analytic central extensions
of the universal covering group of P by U(1). Asis
now well known, there is only one such equivalence
class, that of trivial extensions. This problem was
generalized by Bargmann,? who studied the continuous
unitary projective representations of simply connec-
ted topological groups. For the exceptional case of
Lie groups, Bargmann reduced the group problem to
an equivalent Lie algebra extension problem. As
noted by Galindo,8 this is possible in the case studied
by Bargmann, but not for every analytic group exten-
sion. There are extensions of the Lie algebra of an
analytic group (i.e., 2 connected Lie group) which do
not induce corresponding analytic group extensions.
Anyway, Lie algebra extensions can be of much help
in the study of analytic group extensions, since no
topological difficulties are involved, and they give a
good deal of information for the solution of the latter
problem.? Galindo studied some Lie algebra exten-
sions of the Poincaré algebra and his study was pur-
sued in Refs. 10 and 11,

The purpose of this paper is the study of Lie algebra
extensions in a constructive way. As physicists are
interested in the determination of some Lie algebra
extensions, we look for the tools in order to accom-
plish this task. We derive some conditions which
must be satisfied by the considered extensions, and
give a procedure for the construction. In Paper I we
formulate general results, valid for any Lie algebra
extension, and we analyze more extensively the case
of some types of Lie algebras which frequently ap-
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pear in physical problems. Inthe Paper Il we will illu-~
strate the results of the present paper in the case of
the Lie algebras of the Euclidean, Galilean, and Poin-
caré groups.

Following Calabi, 12 we introduce in Sec. 1 the idea of
sliced extension,13 and examine the physical meaning
of this definition. The fundamental problems of Lie
algebra extension theory are then formulated and we
give a procedure for the solution. Given an arbitrary
extension (§,p), we can consider some particularly
important related sliced extensions, the w-sliced ex~
tensions. These give directly information about the
structure of the Lie algebra §. From the set of ex-
tensions of any Lie algebra we pick out the primitive
extensions, which are the basic elements of the set.
They are all extensions by Abelian Lie algebras,

Section 2 is mainly devoted to the study of irreducible
extensions, which form the core of any extension. In
this case, conditions are given which must be satis-
fied by the Lie algebras coming inio the picture. We
associate with an w-sliced extension one graph which
allows for a visualization of these requirements.

The paper ends with two appendices. In Appendix A
we give examples of some peculiarities of the exten-
sions by non-Abelian Lie algebras. A theorem per-
mitting the selection of a useful complete set of 2-
pseudococycles is proved in Appendix B.

Notation And Some Conventions

We consider exclusively vector spaces, modules, and
Lie algebras of finite dimension over a fixed, but
arbitrarily chosen, field F of characteristic 0. This
is tacitly understood throughout the paper.

Capital script letters G, ®, « - - denote Lie algebras,
and the corresponding capital italic characters A,

B, .- . their underlying vector spaces. If ¢ is a
(linear) representation of a Lie algebra G on a vec-
tor space V,then V, is the §-module associated with
¢. The G-module V, (associated with the trivial re-
presentation ¢ = 0) is said to be trivial, and by a
basis of V, we understand a basis of V,_If % is a sub-
set of elements of some vector space, % denotes the
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vector space generated by % and,if V and W are sub-
spaces of the underlying vector space of a Lie alge-
bra, [V, W] is defined as {[v,w]lv € V,w e W}.14
Suppose that an equivalence relation R is defined in

a set ©. Then,if x € &, we write x for the equivalence
class of ¥, tacitly understanding “modulo R” if no
misunderstanding is possible.

The direct sum (resp. the direct product) of vector
spaces, modules, and Lie algebras is symbolized by
@ (resp.by %),and @5 ® means a semidirect sum of
@ and @, with ideal @B, If both % and B are sets, resp.
vector spaces, Lie algebras, or §-modules, then % —
% (morphism of ¥ into B) denotes a map, resp.a
homomorphism of vector spaces, Lie algebras, or G-~
modules. —», > and >» (or ~) mean epi~, resp. mono-
and isomorphisms (i.e., surjective, resp. injective
and bijective morphisms). If o is a linear map of @
into ®, we write ¢, for the induced morphism A — B,

The following symbols are also used:
C: proper set inclusion;
N = N*U{0}: set of positive integers;
C(@): center of @;

D(@), I(@), A(G) = D(G)/1(G): Lie algebras of,
respectively, all derivations, inner derivations,
and outer derivations of G;

L(G,®): vector space of all linear maps of @ in-
to B;

hom (@, ®): set of all Lie algebra homomorphisms
of @ into B;

SL£(V): Lie algebra of all endomorphisms of V.

We refer to Refs. 10 and 11 for the basic concepts of
Lie algebra extension theory. In particular, by an
extension of ® by @ we mean an ordered pair (8, p),
where p: 6§ @ and @ = Ker p.

1. SLICED AND PRIMITIVE EXTENSIONS
A, Sliced Extensions and Their Equivalence Classes

The concept of equivalent extensions is a fundamen-
tal one in the mathematical theory of Lie algebra ex-
tensions. In fact, the principal problem of this theory
is the analysis of the set ext(®, @) of equivalence
classes of extensions of & by G, for a given pair of
Lie algebras ® and @. Notice that all extensions of
an equivalence class have the same character,1! and
therefore we can consider the sets ext(®, G, ®) of
equivalence classes of extensions of & by G with
character ¢ for any ® € hom(®,A(Q)). The union

of these sets is ext(®, @),

Also for physical problems the equivalence classes
of extensions can be the relevant objects. For ex-
ample, the study of continuous unitary projective
representations of connected Lie groups gives rise
to the problem of central Lie algebra extensions by
the Lie algebra of U(1).7:15 Two equivalent exten-
sions are related to associated projective represen-
tations, whereas two inequivalent extensions give non-
similar projective representations. This is the root
of the well-known Bargmann's superselection rule
of the nonrelativistic mass. Another example of the
relevance of equivalence classes of extensions, but
now in the case of (abstract) group extensions, was

given by Lurcat and Michel.1é They found that, be-
tween the equivalence classes of central extensions
of P7 by the unitary gauge group whose infinitesimal
generators are the operators of the super-conserved
charges (electric, baryonic, and total leptonic), only
one is realized in nature. The “physical extensions”
are characterized by the relation

(— 1)2 = (- 1)¥,

where j is the total angular momentum of any state
of a system of particles, b its baryonic number, and
[ its total leptonic number ( = I, +1 o)

But the pertinence of the mathematical partition in
classes of equivalent extensions to the physical rea-
lity depends strongly on the problem considered.
Occasionally, a coarser subdivision can be suitable,
for instance, that given by the consideration of exten-
sion types.10,11 We have an example of this in the
case of group extensions: The crystallographic space
groups can be obtained from extensions of point
groups by free Abelian groups,17? and in crystalio~
graphy isomorphic space groups are usually identi-
fied. Sometimes a finer partition of the set of exten-
sions can he needed in order to give the solution of
a physical problem. In fact, even if we know that an
extension (&, p) of & by G appears in a given problem,
this is, in general, still not sufficient for the physical
interpretation of the result: One must know the con-
nection of & and @ in &. This was emphasized by
Michel3,4 in the case of group extensions, and the
same reasons fit obviously in the algebraic case too.
An example of the occurence of such a problem will
be published elsewhere.18

The relationship of & and G can be established by con-
sidering, together with (&, p), also a section ¢ of (§,0)
over ®,10 and constructing then a new object, a sliced
extension.12

Definition 1: A sliced extension of ® by @ {with
character @) related to (8,p) is an ordered triple
(8,0, 0), where (&,p) is an extension of ® by G (with
character ¢) and o a section of (§,p) over ®.

Any sliced extension (§,p, ) of ® by @ determines
uniquely a natural decomposition

E:O’v(B)@A

of the vector space E underlying &, where B is iso-
morphic to o, (B) by ¢,. In fact, ¢, is a monomorphism
by the definition of section.

For any extension (§,p) of @ by @ we have a collec-
tion of sliced extensions: one for any section of (8,p)
over ®. Consequently, there are a lot of possibilities
for the connection of & and @ in §. In general, only
few of these are significant for a physical problem.
The example in Ref. 18 is an illustration of this as-
sertion: The charge and hypercharge operators for a
hadronic system are obtained from two different slic-
ed extensions of the one-dimensional Lie algebra of
the electric charge by SU(2), (the Lie algebra of iso-
spin). Actually, in this problem we have two physi-
cally relevant equivalence classes of sliced exten-
sions, according to the following.

Definition 2: The sliced extensions (§,p,0) and
(&',p',0') of ® by @ are said to be equivalent, if there
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is a Lie algebra homomorphism y of § into &’ such
that 0’ = yo0 and the following diagram is commuta-
tive,

¢t and ¢’ being the canonical monomorphisms.

If (8,p,0) and (§’,p’, 0’) are equivalent, we write
(8,p,0)L (§,p%0'), where y is the homomorphism
(actually an isomorphism) which establishes the equi-
valence according to Definition 2. This requires (&, p)d
(8",p’) too,i.e., the equivalence of (§,p) and (8',0)

by y.10 It is easy to see that Definition 2 gives rise

to an equivalence relation in the set of sliced exten-
sions.

With a sliced extension (8, p, o) of @ by @, with charac-
ter ®, is associated one and only one (2; ®, G, $)-
pseudococycle!?! (¢,f,) defined by

fz(b’b’) = [O(b), o(bl)] - 0([b9b,])’ ¢(b) = adaO'(b),

adg: 8 - D(G) being defined by
(adge)a = [e,a] forallac Q.

We call (¢,f,) the (2;®, @, $)-pseudococycle of
(8,p,0). The Lie algebra structure of & can now be
given as follows. Any element ¢ € § can be written
ase =0o() + a,where b € @ and a € @ are uniquely
determined by ¢. Then

[e,e'] = [o®) +a,00') +a’] = o([b,b"])

+[a,a’] + pbla’ — @ba +f,(0,0'). (1.1)
If the extension (&, p) is kept fixed, and we consider
all sections of (&, p) over B, we obtain a set of re-
presentatives of the equivalence classes of sliced
extensions related to elements of (§,p). But two ele-
ments (&, p, 0) and (§,p, 0’) of this set still can be
equivalent. This is the case if there existsy:8§— &
such that y(@) = a and y(o(®)) = o’ (), i.e., if

[o®) + f,0),00") +£,(0)]
=o([b,b']) + f1([b,b"]) +/,(b,0")

(1.2)
and

[0() +f,(0),a] = [0(), a] b,b'€ @,

where f; = 0’ — 0. (1.2) implies Im/f, £ e(@) and
8,(¢), = 0. Conversely, if these conditions are satis-
fied, (§,0,0) £ (8,p,0’). Thus it is plain how to
select, starting from (&, p, 0), one representative
from each equivalence class of sliced extensions re-
lated to elements of (§,p). We can summarize these
remarks by saying that any extension generates a
complete set of representatives of the corresponding
equivalence classes of sliced extensions.

It must be noted that the relation between sliced ex-

tensions and pseudococycles gives rise to a surjection

of the set of sliced extensions onto the set of pseudo-
cocycles which is, in general, not injective. We have

the following.

for allace @,

Proposition 1: Let (8,p,0) and (8’,p’, 0’) be
sliced extensions of & by G with character © and let
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(8,p)L (8',p’). Suppose further that (¢,f,) and (¢’,f3)
are, respectively, the (2;®, @, ®)-pseudococycles

of (8,p,0) and (§,p’,0'). Then (p,f,) = (¢',f5) if

and only if Imf; € €(@) and 6,(p)f; = 0, where f; =
yoo — o',

Proof: 1f Imf; € €(G), then

@' (b) = adqo'(b) = adg(y00)(b) = @(®) forallbe ®
since
(adg (y00)(0))a = [(40) (), a] = y([0(b), a))

for allae Q.

= [U(b), a]
If in addition 6,(¢)f; = 0, we have

£ @,6") =[0’®),0’'®")]— o'([b,b']))
= y{lo(®),0(0")]— o([b,5'D} ~ 6,(0)f)®,b")
=fp(0,0') foralld,b’'c G.

It is obvious that, conversely, ¢’ = ¢ requires Imf,
€ €(@) and f, =1, requires §,(¢)f, = 0. B

Clearly, if (§,p) # (8,p'), then (§,p, 0) and (8,p",0’)
have never the same (2;®, @, ®)~pseudococycle, what-
ever the sections o and ¢’ are. The necessary and
sufficient conditions of Proposition 1 are obviously
satisfied if (8,p,0) £(8",p’, ¢’): Two equivalent slic-
ed extensions have always the same pseudococycle.
Proposition 1 gives rise to a new equivalence rela-
tion in the set of all sliced extensions of ® by G with
character ®: (§,p,0) and (§’,p’, 0') are equivalent if
there exists y: § = §' such that (§,p) L (§’,p"), and
fi = yo0 — 0’ satisfies Imf; € €(@) and 6;(adge0) fy =
0. There is then a natural bijection of the quotient of
the set of sliced extensions of ® by G with character
@ by this new equivalence relation onto 8 2(®, @).11

’

If we consider the sliced extension (§,p,0) of ® by G
with character ¢, keeping (8, p) fixed we let ¢ run
over the full set of sections of (&, p) over ®, then the
(2;®, @, ®)-pseudococycle (¢,f,) of (§,p,0) runs over
the full equivalence class (¢,f2). We can summarize
this by saying that any extension is associated with
an equivalence class of 2-pseudococycles.

B. Fundamental Problems of the Lie Algebra
Extension Theory

We are now faced with the following general prob-
lems:

() Determine all extensions of ® by @, ® and @
being an arbitrary pair of Lie algebras. It suffices
to determine a complete set of representatives of the
equivalence classes of extensions of ® by @,1i.e., one
representative from each class.

(II) Determine all sliced extensions of & by G. Again
it is sufficient to determine a complete set of repre-
sentatives of the equivalence classes of sliced ex -
tensions of & by Q.

The main theorem of Lie algebra extension theoryl1
supplies us with a bijection
o :ext@®, @, 2)>—>HZ(®, a), (1.3)

S0 established that the Lie multiplication in the Lie
algebra & of an extension (§,0) of ® by @ with charac-
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ter ® is given by (1.1) if (¢,f2)€ HZ(®, @) is the
image of (§,p) € ext(®, @, ¢) by a.

This is the analog of Schreier's theorem for exten-
sions of abstract groups.1? ext(®, @) is the union of
the sets ext(®, @, ®) for all & € hom{(®, A (Q)), and we
have to consider all the corresponding sets $ 2(®, @).
It must be remarked that we can have $%(®, Q) = ¢
for some & [and consequently ext(®, @, &) = @]. The
Mori—Hochschild theory of Lie algebra kernels states
that .i)g((B, @) = @ if and only if Obs(®,Q,®) =0

(Refs. 11, 20, 21).

The bijection (1. 3) allows the translation of problem
{I) into the following:

(I') For any ¢ € hom(®,A(®)) such that Obs(®, @, &) =
0 determine a complete set of (2; ®, G, &)-pseudoco-
cycles.

The solution of problem (II) does not meet particular
difficulties. Suppose that we have a representative
(@,f,) of an equivalence class of (2;®, G, ®)-pseudo-
cocycles. We define a Lie algebra extension (§,p) of
the equivalence class ¢~ (g, f2) as follows. Let E’ be
the vector space B X A, Consider a Lie algebra §’
with the Lie multiplication

[6,0), ' a)] = (5,b'],[a,a'] + 9®)a’ — ¢ (b")a
+/,0,5") foralla,a’c @, b,b" & B.

&' becomes & O @ by the natural identification of
do}, @) € & with G. We also define p by p((b,a)) = b
and a section ¢ of (6,p) over @ by ¢(b) = (,0),and
then (8, p, 0) is a sliced extension of ® by G with
character ® and (2; ®, @, ®)-pseudococycle (¢, f,).
Notice that (b,a) = o(b) + a, and therefore the Lie
product of (b,a) and (', a’) coincides with that given
by (1.1).

A complete set of representatives of the equivalence
classes of sliced extensions related to elements of
{&,p) is now easily obtained starting from (§,p, 0)
(see Sec.1A). We have already remarked that, in a
physical problem, only few equivalence classes of
sliced extensions are allowed: The relation ¢’ =

¢ + f; induces a relation between physical quantities,
which must be satisfied in nature. In the example of
Ref. 18 we obtain the Gell-Mann—Nishijima formula.

The present paper is mainly devoted to the solution
of problem (I)[or (I’}]. This is a more difficult prob-
lem, and it depends strongly on the Lie algebras in-
volved. We will give some general results as hints
for its solution, and a deeper characterization for
special types of Lie algebras which often appear in
physical problems.

When @ is an Abelian Lie algebra, problem (I') re-
duces to the study of the vector spaces H2(®, A,) (Refs.
10,11,22). The difficulty in this case resides in the
fact that one must know the representations ¢ of & on
A which are, in general, hard to compute.23 Once the
representations are known, we have to solve a simple
problem of linear algebra.

When @ is not Abelian, problem (I’) is, in general,very
difficult. The analysis of $2(®, G) requires the know-
ledge of ® € hom(®, A(Q)) and consequently of A (@),
the Lie algebra of outer derivations of @. The com-
putation of A(Q) is not very hard, since H1(Q,A ) is
its underlying vector space, ad being the adjoint re-

presentation of @ (on A). But only little is known
about the relation between the Lie algebra structure
of G and that of A(8).24,25 Moreover, if we suppose
to have ® € hom(®, A{@)), it must be proved that
Obs(®, @, %) = 0. A sufficient, but obviously not neces:
sary, condition is H3(®, C(®),) = {0}, whereC(@) is
the vector space underlying é((i). V.0 - CL(C(R])
is defined by ¥ ()c = ¢ (b)c for all ¢ € C(@), ¢ being
any prerepresentation of & into D(@) lifted over &,21
¥ does not depend on the particular choice of ¢, but
only on &. We call it the central character deter-
mined by ¢.

Given & € hom(®, A(Q)) such that Obs(®, @, ®) = 0,
we must compute HZ(®, @}, and for @ non-Abelian
this is, in general, quite arduous. But the analysis of
the Abelian case can be of help since we have a bi-
jection.

B:92(®, @) > H2(B, C(&)y), (1.4)
where ¥ is the central character determined by ®.
Thebijection is defined asfollows. Selecta {2;8,Q, &)-
pseudococycle (¢,g,) which is kept fixed, Let
now (¢’,f,) be any (2;®, G,¢)-pseudococycle; then,
by Lemma 1 of Ref. 11, there exists (¢,f,) € (¢’,f2),
¢ being the fixed prerepresentation. f,-g, can be
identified with an element of Z2(®, C(Q), ), since
Im(f,-8,) & €(@). The bijection (1.4) is such that
Blo’, fo) = fa-g2. Clearly, if we replace {¢,g,) by
another (2; ®, @, ®)-pseudococycle of the same equi-
valence class, we have exactly the same bijection 8.
We can then replace (1.4) by

ﬁ(fﬁ) 192(B, ) ™ H2(®,C(AQ),), (1.5)

where (¢, g,) means that the bijection (1. 4) is defined
as above picking out one element of the class {g, g3).
Any element of 9 2(®, G) determines a different bi-
jection.

H2(®, C(Q),) being a vector space, we can transport
its structure on ext(®, @, &) by means of a bijection
a tofig,y [(@,8,) € HE@®, 8) and @ of (1.3)]. Sup-

pose that there exists one and only one equivalence
class of inessential extensions of ® by @ with charac-
ter &. We choose the bijection X = o 1o il of

H2(®,C(G),) onto ext(®, @, &), and then the unique
class of inessential extensions is the image of 0 €
H2(®, C(4)y) by A, Through A, ext(®, @, ) becomes a
vector space Ext(®, G, ¢) naturally isomorphic to
H2{®,C(a)y). We have a generalization of the Che-
valley~- Eilenberg theory10;22 for @ non-Abelian,
Clearly, this generalization is not possible if there
exist many or no equivalence classes of inessential
extensions: We can always supply ext(®, @, $) with a
vector space structure, but this is not a natural one
for the extension theory. We will show in Appendix
A, by some examples, that the cases of no or many
equivalence classes of inessential extensions really
oceur. If f; € L(®, @), let A,(p)f; be the bilinear
alternating map of @ X@® into G defined by

(& @) )0,07) = 01(@)f)@,b") + [f,0),/,(6)]. (1.6)
We can give the following uniqueness criterion.
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Proposition 2: In order that there exists one and
only one equivalence class of inessential extensions
of ® by @ with character ®, it is necessary and suffi-
cient that

(1) there be 2 representation ¢ € hom(®, D(®)) lift-
ed over &,
and

(2) for any f; € L(®, @) with
Im@ 1 (9)f1) € C(G

there is f;’ € L(®, @) such that Imf; C C(G) and
51(¢)f1' = Al(fﬂ)fl.

(1.7

Proof: Necessity: Condition (1) is necessary by
Theorem 1 of Ref. 11, Suppose that (2) is not satis-
fied. Consider f, € L(®, @) such that nof,’ € L(®, @)
with Imf,’ C €(G) and 6,(¢)f; = A,(¢)/f; exists. I
@' =@ + adefy, then (p', A, (@)f;) € 3 2(®, G) and
', 84(@)f) = (@, 0). But,by (1.7), ¢" is a repre-
sentation, and hence (¢, 0) € 3 2(®, @). Moreover,
(¢, 0) = (¢, A,(p)f;) by our assumption, i.e., (¢, 0) =
(¢,0). Then we have two equivalence classes of in-
essential extensions a~1{¢’, 0) and a 1(p, 0), o being
the bijection (1. 3).

Sufficiency: Suppose that the conditions (1) and
(2) are satisfied and consider ¢’ € hom(®,D(Q)) lift-
ed aver $. There exists f; € L(®, G) such that ¢* =
¢ +adef, and then (¢’,41(9)A) = (¢, 0) by (1.7). As

(¢’,A1(@)f1) = (¢, 0), sinced (p)fy = 8,(0)f{ =

5, (¢")f,, we get (¢, 0) = (¢, 0). This implies the exis-
tence of one and only one equivalence class of inessen-
tial extensions.26 @

Now we can prove the following result quoted by
Galindo8:

Corollary: A necessary and sufficient condition
that any inessential extension by @ with character 0
be trivial is that the extension (@, ad) of 1(@) by € (@)
be inessential.

Proof: If @ and ® are arbitrary Lie algebras,
there exists always one equivalence class of inessen-
tial extensions of & by G with character 0: the class
of trivial extensions., A representation ¢ €
hom(®, D(®)) lifted over 0 is then the trivial one. Sup~
pose that the class of trivial extensions is the unique
equivalence class of inessential extensions by @ with
character 0, and consider ® = I(G). If ¢ is any sec~
tion of (@, ad) over I(®), we can define f; € L(I(G), G)
by /,(6) = o(b) for all b € I(G). Then f, satisfies (1.7)
with ¢ = 0, A,(0)f, being the factor set associated
with o, and (@, ad) is inessential by condition (2) of
Proposition 2. Conversely, if {G, ad) is an inessential
{central) extension of I(€) by €(Q), there is a section
o of (@, ad) over I(®) such that @ = o{I(Q)) ® C(G). ®
being an arbitrary Lie algebra, choose ¢ = 0 and con-
sider the projection 7y, of G onto €(@). I f, €
(L(®, @) satisfies (1. 7); we must have (4, (0}f 1)1’(b, b)) =
— Tl @f1(1b, 8’]), for all b,b’ € ®. This implies
6]'(0) fi = 4,(0)f; if we choose f, € L(®, ) defined by
J{0®) =7, @ f1®). The wanted result follows from
Proposition 2.
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Independently of the uniqueness or not of the equiva-
lence class of inessential extensions, the bijections
(1.5) are very useful in solving problem (I’). We can
select an equivalence class of 8 2(®, @) and, keeping
an element {(p,g,) of this class fixed, choose a re-
presentative (2;®, C(®),)-cocycle &, from each equi-
valence class of Z2(®, C(®@),). Then we consider
(@,f;) € B 3(®, G), where f, = h, + g,. If h, runs over
all classes of Z2(®, C(Ci):), (¢,7,) runs over all clas-
ses of 32(®, G). Moreover,ifh, =k} andf, = hy +
8y, then (p,f2) # (¢,f2). Thus we have to choose suit-
able representatives of the equivalence classes of
Z?(®, C(G),). This can be done by means of the Hochs-
child-Serre theorem.19,27 The reduction theorem of
Ref. 11, which is a generalization, in the case of G non-
Abelian, of the Hochschild—~Serre theorem forn = 2,
allows an appropriate choice of (¢,£,). We will prove
in Appendix B a theorem which implies the previous
remarks. Actually the reduction theorem is a stronger
result, and its application to our problem already in-
cludes the choice of 2, according to the Hochschild-
Serre theorem. The meaning of the reduction theorem
is the following. Let (§,p) be an extension of ® by &
with character @, and suppose that D is an ideal of &
such that /D is semisimple. By Levi's theo-
rem14,28,29 any extension of a semisimple Lie alge-
bra is inessential. Therefore,® has a subalgebra §
isomorphic to ®/D by the canonical epimorphism 6 —»
®/D,and ® = $ b D. Thenthere exists a sliced exten-
sion (6,0, 0) with (2;8, @, )-pseudococycle (¢,f,)
which satisfies

fols,0) =0 forallse 8, b,b'c®
@(8)f, 0,0y =1, (s,b),0") + £,0,[s,5')), (1.8)

i.e.,f, is w-orthogonal to 8, withw = ¢ |8.11 wisa
representation of § into D(Q®) lifted over @ [§, and

[QD(S), Qo(b)] = (P([s, b])

It follows also, from the proof of the theorem, that w
can be chosen in such a way that, for any s € §,

w(s) = 0 if and only if ®(s) = 0. We say that such an
w is isomorphically lifted over ®18. If (§/,p’) is any
other extension of ® by G with character &, there
exists a sliced extension (§',p',¢’) with (2;®, G, ®)-
pseudococycle (p,f,) (the same ¢ as above), where
f, is w~-orthogonal to 8. Our remarks fit in particu-
lar if D = ®, the radical of B,i.e.,if B =8 Risa
Levi decomposition, § being a maximal semisimple
subalgebra of G.

forallse 8§, b e @,

Obviously, the reduction theorem gives a trivial re-
sult whenever the maximal semisimple subalgebra of
® is {0}, 1i.e., if ® is solvable. But many Lie algebras
of interest in physics are not solvable (for example,
the Lie algebras of the Euclidean, Galilean, and Poin-
caré groups).

C. w-Sliced and Primitive Extensions

The Lie algebra & obtained from an extension {§,p)
of ® by @ has some well determined Levi decompo-
sitions induced by those of ® and G, as appears from
the following result which generalizes Theorem 5 of
Ref. 11,

Theovem 1 (structure theovem): Let G= 8, -b &,
and @ = 8, & R, be arbitrary Levi decompositions of
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@ and ®, and suppose that D*®, = {0}, D"®, = {0}. If
(8,p) is an extension of @ by @, there exist a sliced
extension (6, p,0) and a Levi decomposition

8 =(0(8;) ® 87) v R,

where 0(S,) is isomorphic to 8, by p and [g, (R,),S;] =
{0}. The radical ® of & is such thatR = g, (R,) & R,
and D™**® = {0}.

Proof: ®, is an ideal of §, hence (§/®,,p) is an
extension of ® by @/®R,, where Py 8/®, > ® is the
epimorphism obtained from p by passing to the quo-
tient. @/®, is semisimple, and there is an isomor-
phism 7: 8;>» @/®,, the restriction to 8, of the cano-
nical epimorphism of @ onto @/®,. Then there is a
sliced extension (§/&;, P, 0,) such that

8/8; = 0,®) & n(Sy), (1.9)
0, being a monomorphism. Put 8=0,(8,)® 7(8;) and
consider the canonical epimorphism p*: § = §/®;.
(8,p*) is an extension of §/®, by ®, (with character
®*), and by the reduction theorem we may consider a
sliced extension (§,p*, o*) whose (2; §/®,, ®,, ®*)-
pseudococycle (¢*,f5%) is such thatf;* is w*-orthogo-
nal to 8§, with w* = ¢*|8 isomorphically lifted over
&*|8. Moreover, ¢* can be chosen to satisfy26

o*((s,)) =s, foralls, €8,.
Put 0*o0, =0 and consider the vector space M =
0,(R,) &R, & induces on M the structure of an ideal
MG If m = ofry) + 7, is any element of M and ¢ =
o*(e) + 7, any element of &, then

(e,m] ={o*(le, 0, (r)]) + [r,71] + @*(elry
- 90*(0(1 (72))71' +f2*(f; % (72))} €M,

since o*(e, o, ry))]) € o,(R,). Mis a solvable ideal
too:

[06ry), 0] =107 2,75]) +/,*(0, (), 0, (N} € T
and
[oy), 7] = 0* (0, try)r € &

for allv,,7, € R,,7; € Ry,

therefore,

DM < 0, (DIRy) © Ry

and analogously
DM Saq,(D'R,) © R4,

where DM (DR,) means the vector space underlying
DI (D*R,). For i = m we obtain DM C R, and in-
fer D™ 9 = {0} . Besides,o*|$ is a monomorphism,
and thus ¢*(38) = 8 ; & 0(S,) is a semisimple Lie
algebra supplementary to 9l in & and o(S,) is iso-
morphic to $, by p. Hence M = &, the biggest solv-
able ideal, and

8 = (0(S3) ® 8;)» @,
Moreover,

[o(ry), 8] = 0* (o, (ry), n(s))]) = O
for allr, € ®,, s, € §,,
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by (1.9). We end the proof observing that ¢ is really
a section of (§,p) over ®. Indeed p = p, °p* and
ple®) =bforallbec & W

Notice that, choosing (§,p, o) as in the proof, we have
150,07 =f*o,(0),0,0) € ®,

An immediate consequence is then the following.

for all b,b’ € ®.

Corollary: Let @ and ® be as in Theorem 1, If
(&,p) is an extension of ® by G with character &,
there is a sliced extension (6, p, o) whose (2;®,Q, ®)-
pseudococycle (¢,f;) has f, w~-orthogonal to §,, w =
@ |8, being isomorphically lifted over ®|8,, and satis-
fies ¢ (®)S, = {0} and Imf, € ®,.

If (&’,p') is any other extension of ® by @ with
character &, there is a sliced extension (§’,p’, ¢')
with (2; ®, @, &)-pseudococycle (¢,f;), where £ is w-
orthogonal to 8,, ¢ being the prerepresentation of the
corollary and f§ = f, + hy, hy € Z2(®, C(Q),) (see the
theorem of Appendix B). It follows that Imf; € ®,.
This suggests the following.

Definition 3: We say that a sliced extension of ®
by @ with character ¢ is an w-sliced extension for
the Levi decompositions @ = $, 5 ®, and ® = 85 P
®,, if its (2;®, @, ®)-pseudococycle (¢, f,) has f, w-
orthogonal to 8,, with w = ¢ |8, isomorphically lifted
over ¢|$,,and ¢(®)$; = {0}, Imf, C ®,.

The corollary can now be stated as follows: With
(8, p) as in Theorem 1, there exists an w-sliced ex-
tension (&, p, o) for the Levi decompositions @ =

§; PR, and B =8, b R,.

w-sliced extensions are clearly dependent on the
chosen Levi decompositions. But the result of the
preceding Corollary is valid for any fixed Levi de-
composition of @ and ®@. Whenever we speak of w-
sliced extensions throughout this paper, it must be
understood as “for the Levi decompositions G = 8, b
R;iand B = S, b R,.”

Note that, even if ® is solvable and hence any

(2;®,3, ®)-pseudococycle (¢, f,) has f, 0-orthogonal to
Sy = {o , the result of the corollary is not trivial: 0-
sliced extensions can be selected according to it with
EZ' ®,3, ®)-pseudococycles (¢,f,) satisfying ¢(®)S, =
0} and Imf, & ®,.

Let A, (¢)f, be the bilinear alternating map of ® X ®
into @ defined by (1.6). The following proposition
answers the question about the relation between w-
and w’-sliced extensions.

Proposition 3: Let (8,p,0) and (§,p, 0’) be sliced
extensions of & by @ with character . Suppose,
moreover, that (&£, p, 0) is an w-sliced extension with
(2; ®, @, )-pseudococycle (¢,f,). A necessary and
sufficient condition that (§, p, ¢’) be an w’-sliced ex-
tension is that f; = o’ — ¢ satisfy

(1) Imf, c €4 (8,), the centralizer of 8, in @,
(2) (A (@)f)(s,5,b) =0foralls, e §,, be @,
Proof: 1If (¢’,fs) is the (2; B, @, ®)-pseudococycle

of (6,p,0'), then fy =1, + A (p)f,. Condition (2)
means (Al(qa)fl)s2 = O for alls, € $, (in the notation
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of Ref. 11), and obviously it is necessary in order to
have (¢, f3)e 82, (®,8,,8),w’ = ¢’ S,. Moreover,
¢'(®)8, = {0} requires Imf, C €,(8,), since

') =@®) +adf(b) forallbec B,
and ¢ (®)8; = {0}. Suppose now that, conversely, con-
ditions (1) and (2) are satisfied. We first prove
ea(sl) C ®,. Let s; + 7, be any element of ea(sl),
with s; € §,, ; € ®,. This requires

[s; +7,,8{] =0forall s{ € 8;,andthuswegets; =0,

i.e.,Cq(8,) S ®,, from the semisimplicity of $;. For
allb,b’ € ®,¢b)f,(b’) € ®,, since f,(0') € C4(8,) &
®, and R, is a characteristic ideal of @. It follows
that Im(A, (¢)f,) & ® ;,and then Imfy; C R, ¢’ (B)S; =
{o}. Moreover,as (), =0,

Sz(w’)'fz’ = 61((P ')(fz')sz =0
by (I.4) of Ref.11,i.e.,(¢’, ;) € 32 _,(®, 8,,Q) and
(8,p,0') is an w’ -sliced extension. &

for all s, € 3,

If w is any representation of S, into D(@), we can
equip A with the 8,-module structure associated with
w. By Weyl's theorem?28,29 we obtain a semisimple
$,-module A4 . In particular, every w-sliced exten-
sion of ® by @ with character ¢ determines one S,-
module A, which can be kept fixed for all extensions
of @ by @ with character & (remark following Corol-
lary to Theorem 1).

Definition 4: We call fundamental $,- module of
an w-sliced extension of @ by G with character ¢
and (2; ®, @, ®)-pseudococycle (¢,f,;) the semisimple
8,-module A(¢,f,) induced by A, on Imf,.

The vector space Imf, & A, generated by Imf,,be-
comes in fact an $,-submodule of A by (1.8). Two
cases are particularly important:

1) Alp,f,) =10}: (§,p) is then an inessential ex-
tension;

(ii) A(p,f,) simple $,-module.

Consider the set €($,,®,) of isomorphism classes
of simple fundamental §,-modules of w- sliced exten-
sions of ® (w variable). If 85 is another Levi factor
of ®, there is a corresponding set ¢ (8, ®,) and a
natural bijection of ¢ (8,,®,) onto ¢ (S,, ®,) which
allows the identification of these two sets. We will
now show that € (S,, ®,) is a finite set. In order to do
this, we define a representation : 8, = GL(R;) by

sk = [s,7] (1.10)

and we obtain an associated S,-module R . If

A(e, f5) is the fundamental S,-module of an w-sliced
extension of ®, there is an epimorphism (of 8,-
modules)

for any v € &,

2
/\R29 —» A(p ,fz)
given by

rAY' B folr,y)  forallv,r’ € Ry,

2
where the $,-module AR, is the second exterior
power of R29 (associated with the representation
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2
given by the diagonal action of $, on AR,).28 From

2
the semisimplicity of /\R29 it follows then easily that
¢ (8,5, ®,) is a finite set.

The following result is now plain if we define the iso-
typical components and the length of semisimple
modules as Bourbaki (Ref. 30, §3, Secs. 4 and 5) does.

Proposition 4: Let A be the 8,-module deter-
mined by an arbitrary w-sliced extension of ® by @
with character ®. If the lengths of the isotypical
components of A, of types belonging to ¢ (S ,, ®,) are
all 0, then every extension of ® by @ with character
¢ is inessential.

We now pick out some important extensions which
are the cornerstones of the set of all extensions of ®.

Definition 5: An essential extension of ® by @ with
character ¢ is a primitive extension if A, is a simple
S,-module for any representation w of $, into D(@)
isomorphically lifted over |8,. We call also primi-
tive the truly trivial extensions of ®,i.e., the exten-
sions of & by {0}.

If (§,p) is a primitive extension, then any extension
of the equivalence class (§,p) is primitive too. We
may speak of classes of primitive extensions,

Theovem 2: Every primitive extension is an ex-
tension with Abelian kernel.

Pyroof: Let (8,p) be a primitive extension of ® by
@ and (8, p, 0) an w-sliced extension. As

Aw=Slw,®R1 s

wr

where w’ and w” are, respectively, the subrepresen-
tations of w on S, and R,, the primitivity of (§,p) im-
plies $; = {0}. Then @ is a solvable Lie algebra and
D13 C @ or @ = {0}. But D@ is a characteristic
ideal of G; hence it carries the §,-module structure
induced by A . Again from the simplicity of A, we
conclude that @ = {0} or D1@ = {0},i.e.,@ is Abelian.
]

It follows in particular from Theorem 2 that we have
actually a unique representation of 8, into D(G) lifted
over ®|8,. Moreover, since for an w-sliced exten-
sion (§,p, 0) the fundamental 8,-module A(p,f,) &
le L, the preceding considerations give the following.

Corollary: Let (§,p,0) be an w-sliced extension
of ® by @ with simple fundamental §,-module
A(g,f,). Suppose further that @ induces on A(p,f;)
the structure of a Lie algebra G (¢,f,). Then
@(¢,f,) is Abelian.

A few comments are now necessary.

(1) Consider a primitive extension (§,p) of & by G
and an w-sliced extension (§,p, ¢) with fundamental
$,-module A(p,f,). @ is Abelian by Theorem 2 and
A%(p Jo) = A, . Besides, ¢ is an irreducible repre-
sentation of ® into D(@) and A becomes a simple G-
module A, or A = {0}. If I is the nilradical of @, i.e.,
the intersection of the kernels of all finite-dimen-
sional irreducible representations of ® (the “radical
nilpotent” of Bourbaki,2° which is contained in the
‘{‘n}il radical” of Jacobsonl4), then by definition ¢ (J) =
0;r.



LIE ALGEBRA

(2) Let (8,p) and (&,p’) be essential primitive ex-
tensions of ® = 3 ® I by @ with character ®, and
suppose that AN, is a simple §,-module, where Q,is
given by (1. 10).Q'I‘hen & ~§'ie.,(8,p) and (&',p")
are of the same type.11

In order to see this, let (§,p,0) and (§’,p’,0’) be w-
sliced extensions with, respectively, (2; ®, @, ®)-
pseudococylces (¢,f;) and (p’,f;). Notice that ¢ =
@', since @ is Abelian. It is now possible to define
an isomorphism 8:8 > &’ by

0(f,(b,0") =15 (b,b")
for allb,b’ € .

6(o(d)) = o’ (b),

In fact, two arbitrary elements e, ¢’ € & can be
written as ¢ = o(b) + 2i; ;. fpl;,m) and €’ =
a®’) + Zi,j o/ foln;, 1), {n} being a basis of % and
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{ag-’} CF. Letb=s +nand b’ = s’ +n’, where
s,8' € 8,, n,n’ € N, Then

[6(e), 8(e’)] = o’ ([b,b7]) + iE o
J

x {3 0s,m.)m) + iy, [s,m,
— g aij{fz’([s’,ni],nj) + £ (g, [s',nj])} + foln,n')
= 0{e, '],
and obviously Ker 8 = {0}.
2. IRREDUCIBLE EXTENSIONS AND GRAPH
THEORY

A. Irreducible Extensions

Consider a (2;®, &, ®)-pseudococycle (¢,f;). Start-
ing from the vector space Imf,, define some other
subspaces of A as follows:

J
PH® IS, = {(9(6)' (9(b5)) 2 - +(@(b;)alby, by, - -+, b, € Bia € Imfy Zdy = i with iy, j €N} i € N,

and

@0 (®) Imf2 = Imf,.
Then )

Al = E (pl (03)Imf2

ieN
is a subspace of 4, but, in general, ¢J(®)Imf, N
@#@)Imf, = {0}. @ induces on A’ a Lie algebra struc-
ture, because of the following.

Theorem 3: Let (6,p,0) be a sliced extension of &
by @ with character ¢ and (2;®, G, ®)-pseudococycle
(¢,f5). The vector space A’ =2, ¢* (®) Imf, be-

comes a Lie algebra @’ with ieN

[¢/(®) Im/,, (@) Imf,] € ¢#3*2(®) Imf, + ¢ 1(®) Imf,.

Proof: ¢ is a prerepresentation of ® into D(Q)
associated with f,,11 then

@ (0)@ (b5)f5(b3,04) — @ B)0 (b1)f, (b3, b,)

= @ (b3, b,))/5(b5,b) + [f5(b1,85),75(b5,0,)]

for all b;,b,,b,,b, € G.

Therefore

[Imf,, Imf,] € ¢2(®)Imf, + ¢ (®)Imf,,
and analogously
[¢'(®) Imf,, Imf,] C ¢*2(@)Imf, + ¢¥*1(®)Imf,

for all i € N*,

With ¢ € N* and the induction assumption
[0 1®) Imf,, ¢ (®) Imf,] S ¢*/"1(®B)Imf, + ¢*/(®)Imf,

we find for allj € N,

[¢' @) Imf,, 03 (®) Imf,]
= [[0,(B),¢* 1(®) Imf,}, 04 (®) Imf,]
C [[¢*1(®) Imf,, 9/ (®) Imf,], o, (B)]

|
+ [[¢/®) Imfy, 0, (B)], 9" 1(®) Imf ]
€ [¢*7'1(®)Imf,, 6, (B)] + [¢*I(®)Imf,, 0, (B)]
+ [@#1®) Imf,, 97 LH(®) Im/f,)
C ¢#"2(®)Imf, + ¢*7*1(®)Imf,.

The conclusion is obvious. B

Define

E' ={o®) +albec ®;ac a’}.

E’ becomes a Lie algebra &’ C § with the Lie algebra
structure induced by §. Hence (§’,p’), where p’ =
pl&’,is an extension of ® by @’. Choosing another
sliced extension (&, p, ¢’) we obtain, in general, a dif-
ferent extension (§”,p”). In particular, (§’,p’) and
(8”,p") can be irreducible and different even if @ is
Abelian, contrarily to a claim of uniqueness in Theo-
rem 4 of Ref.10. Now we will study (§,p’), genera-
lizing some ideas of Ref.11.

Definition 6: Let (§,p, 0) be a sliced extension of
® by @& with character & and (2; ®, G, ®)-pseudoco-
cycle (¢,f,). We say that Imf, is maximal in A if
Imf, = A and there exists no ideal @’ of § such that
Imf, C A" C A.

Theorem 4: With the notation of Definition 6, a
necessary condition in order to have the irreducibili-
ty of (&, p) is that Imf, = A or Imf, be maximal in A.

Proof: Suppose (§, p) irreducible. If Imf, is not
maximal in A, then Imf, = A or there exists an ideal
@’ of & such that Imf, C A’ C A. In the latter case we
have an induced sliced extension (8/@’, p,, 0,) of &,
where g,(b) = 0(d) (mod @), with (2; B, 3/G’, &,)-
pseudococycle (¢,,/, g)- Actually f, =0, and there-
fore (6/@',p,) is inessential. By the Irreducibility
Criterion (Theorem 7 of Ref. 11) (8, p) is reducible,
and this contradicts our assumption. B
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Theovem 5: In order that an extension (8, p) of
® by @ with character ¢ be irreducible, a necessary
condition is that

A= 2 ¢i(®) Imf,,
ieN
where (¢, f,) is the (2; 8, @, &)-pseudococycle of an
arbitrary sliced extension related to (8, p).

Proof: Let (8, p) be irreducible and consider A’ =
Zicn 91 (®)Imf,. Suppose A’ C A, We have Imf, C
A’ C A and, by Theorem 3, A’ becomes a Lie algebra
@’ which, moreover, is an ideal of §. This means
that Imf, is not maximal in A and, by Theorem 4, the
reducibility of (&, p) contrary to our assumption. B

The importance of irreducible extensions is easily
recognized: They form the core of any extension.
The determination of the extensions of ® by G is
simplified once the irreducible extensions of ® by
some subalgebras of @ are known, Now we will re-
strict ourselves mainly to the study of irreducible
extensions,

From the structure theorem we see immediately

that all extensions by a nonsolvable Lie algebra are
reducible, and, therefore, we always have §; = {0}
and @ = ®, whenever irreducible extensions are con-
sidered.

Let (&, p) be an irreducible extension of ® by G with
character &, and let again (¢, f,) be the (2;®, G, ®)-
pseudococycle of a sliced extension (§,p,0). By
Theorem 5,A can be expressed as a sum of sub-
spaces obtained from Imf, by iterated application of
the linear operators ¢(b) for all b € ®, If we choose
an w-sliced extension, we can expect to obtain a
better characterization of the conditions which must
be satisfied by @. In fact we know that, in this case,
A becomes a semisimple $,-module A . Moreover,
Imf, becomes the fundamental $,-module A(e, f,)
and, for any { € N, we can consider the $,-module
¢ (R,)A(p,f,) instead of ¢(®) Im f,, since

W(s)e(r ) o) 2+ (@lr;) g

I ) . -
- <:Z>1 zz—i(w e @) 2 (o) F g (s, 7))

x(@r ) (o) 1a +(p(r )1 (@(ry))*
x.. -((P(V]))ifw(s)a> c 0" (A, 1)

for all s € §; and all elements _gg(_rl))’l v (r].))’ia
which generate ¢i(®,)A(0,f,) (Ll i, =4, a <
A(g,f,)]. Note that if A;  and A,  are §,-sub-
modules of A, then [AI,AZ] becomes an S,-sub-
module [Am,’Azwz] too. Then we may replace “slic-

ed extension” by “w-sliced extension,” “vector space”
by “$,-module”,Im f, by A, f;), »*(B)Im f, by
@Ry Al@,f2), A" by A’ ,,and A by A  in Theorems
3,4,5 and Definition 6 without changing the outcomes.
Besides, some previous results can now be improved:

(i) In the particular case of extensions of a Lie
algebra with Abelian radical ®,, it is easy to prove
(see proof of Theorem 3) that

[H(®R)A (0, f2), 7 (Ry)A(g, f2)] € ¢¥72(Rp)A(, f3),
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since
[A(Gl’,fz),A(%fz)] g ¢2(m2)A(¢,f2).

(ii) Consider an irreducible extension (8, p) of ® by
G with character 0. There is a 0-sliced extension

(8, p, 0) with fundamental 8,-module A(0, f,). From
Theorem 3 and Theorem 5 it is plain that @ = G(0, f,)
is Abelian, i,e., all irreducible extensions with char-
acter 0 are central.

(iii) An obvious consequence of Theorem 5 is the
following.

Corollary: Let (8, p, 0) be an w-sliced extension
of ® by G with character ¢ and fundamental $,
-module A(gp, f,) # A, . Suppose further that ¢(r)a =
0 for all » € &y, a € A(yp, f;). Then the extension
(8, p) is reducible.

(8, p) being the same irreducible extension as above,
suppose that there exists # ¢ N such that ¢*(®,)
A(g,f,) = {0}. Then G is a nilpotent Lie algebra. In
particular this is always true if the radical ® of & is
nilpotent, Now we give some sufficient conditions in
order that ® be nilpotent. Notice that the radical &,
of & = $; b &, becomes an $,-module R, associat-

ed with the representation  given by (1. 10).

Theorem 6: Let (8, p) be an irreducible extension
of by G, If ® = 8, ® &, with &, nilpotent, and if

2
the S,-modules R, and A R, have no trivial $,-sub-
modules # {0}, then the radical ® of & is nilpotent.

Proof: Let & be the character of (§, p) and con-
sider an w-sliced extension (8, p, o) with (2; G, @, &)
pseudococycle (¢, f,). If f, =0,(8,p) is inessential
and the irreducibility requires @ = {0}. In this case,
® is nilpotent since o(®,) = &, o being an isomor-
phism. Suppose now f, # 0 and let ¢’ € hom($,,D(®))
be defined by ¢'(s)y =[o(s),7]forall se §,, r € Q.
In particular,we have ¢’(s)a = w(s)afor alla € A. If
® is not nilpotent, the biggest nilpotent ideal 3l of &}
(the “nil radical” of Jacobsonl4) is a proper sub-
algebra of ®. Since JMis a characteristic ideal of
&,we have a proper submodule N o Of the 8,-module
R_,, ©" being the subrepresentation of ¢’ on N. By

eyl's theorem there is a supplementary $,-module
of Nw” in R‘p,, and this is a trivial module R, since
any derivation of & sends elements of R into 91.14,29
Therefore,

R, =N, & Rj.

0,(Ry3) C R becomes also an S,-module (0,(R5)),,, of
R,,, ¢” being the subrepresentation of ¢’ on ¢,(R,).
Moreover, by our assumptions,

(0}, (Rz))q,m N Ry = {0}’

since (0,(R3)),., is isomorphic to the §,-module R,_,
and

A((P;fz) n R6 = {0}’
since A(g, f5) is the direct sum of nontrivial simple

8o-modules. Then there is an extension (§’, p’) of
® with
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8 =[(o(8,)® S)® NJCé

and p’ = pl§’, and this contradicts the irreducibility
of (&, p). It follows that ® = ¢, i.e., R is nilpotent. B

Notice that if we assume ®, Abelian, the fundamental
S, -module A(g, f,) of (&, p, 0) is contained in N, ,
since

folr, vy =[olr),o(z")] forallr,» € &

and DIR ¢ XK.

Corollary 1: Let (&, p) be an irreducible exten-
gion of G by G and let ® = §, ® ®, have Abelian
radical. In order that the radical ® of & be nilpotent,
a sufficient condition is that the S;-module Ry
have no trivial §,-submodules = {0},

The biggest nilpotent ideal of a Lie algebra containg
all nilpotent ideals, This implies the following.

Corollary 2: Let (8, p) be an irreducible exten-
sion of ® by a nilpotent Lie algebra G. Suppose fur-
ther that & = 8, © G, with nilpotent ®,., In order
that the radical ® of & be nilpotent, it is sufficient that

the $,-module R, have no trivial $,-submodules = {0}.

Any subalgebra of a nilpotent Lie algebra is nilpotent.
It follows:

Corollary 3. With the assumptions of Theorem 6
(or Corollary 1) the Lie algebra @ is nilpotent,
Let (&, p) be an irreducible extension of & by @ with
character &, and let ® be nilpotent. Consider an w-~
sliced extension (6, g, o) with fundamental §,-module
A(g,f5). By Theorem 5 there exists n € N such that

(@A, f5) =10}, 97 (®Ry)Ale, f,) = {0}

forallj <n (2.1)

and
A

i

-1
w Z% 0H®y)Alg,f,) for n € N¥,
A, =1{0}

Consider (8, p, ¢’) with ¢’ # o and fundamental $, -
module A(g’, f5'). There exists n’ € N such that the
relations (2,1) and (2.2), with # replaced by »’ and
A, f5) by A(g’, f3), are satisfied. Now we will show
that »' = n. Since (¢, ;) and {¢’, f3) are equivalent
elements of 3 2(®, @), there is f, € L(®, &) such

that

(2. 2)
for n =0.

il

¢'(r) = @lr) + adfy{r)
and
L 7)) = oo, v') + (8 (@) ), 77) + [F1(7), 1 (r")]
forall v, v’ € R,.
But

)

Imfy € 2 ¢H®)Alg, /),

i=0
and hence

(@ ) U@ )2 (o' ) if3r, )
= (o )" (92D (@ 1) ifp 1, 7)
gL,

where

j . .
Ezkzz,

rl,...,:»},r,r’ € ®,
As1

and g,%:‘.'.{f(r, r') € ;Q ¢ *(@)Alg, 1)

This implies the existence of m < n such that
gfiiiifg:(r, v)=0forall7ry,..., %, 7+ € R and all

iy e ens iy, with 2370, 4, = m. Consequently n’ < n.
Conversely, if we start with (&, p, 0’ ), we obtain

n < n',and therefore » = »’. This allows the partition
of the set of irreducible extensions of G into two
disjoint parts.

(1) We say that an extension (&, p) of ® belongs to
&,(®) (n € N) if it is irreducible and if there exists
an w-sliced extension (8, p, 0) with fundamental §, -
module A{g, f,) such that (2.1) and (2. 2) are satis-
fied.

(2) We say that (8, p) belongs to € (®) if it is irre-
ducible and if no # € N exists such that the funda-
mental $,-module A(g,f,) of an arbitrary w -sliced
extension (&, p, o) satisfies (2.1) and (2.2).

The extensions belonging to €, (®) are irreducible
extensions by nilpotent Lie algebras. However, ex-
tensions of ® by Abelian Lie algebras which belong to
¢, (®) are not ruled out.

The following result follows immediately from the
remarks above,

Theorem 7: In order that (8, p) be an element of
¢,(®) with n € N*, it is necessary that (2.1) and
(2. 2) be satisfied for an arbitrary w-sliced extension
of @ by @ related to (8, p) and with fundamental $,-
module A, f;). I n =0, @ ={0}is a necessary
and sufficient condition.

B. Graphs Associated with an w-Sliced Extension

Consider the fundamental $,-module A(g, f,) of an
w-sliced extension (&, p, o) of ® by G and the §,-sub-
modules ¢®;)A(¢, f,5) (i € N) of 4,. Weyl's theorem
allows a deeper analysis of these $;-modules, since
they are all semisimple and then expressible as sum
of simple §,~submodules.

Let
L ¢i0,)Alg,1;) =41 € A,

A/, can be given as sum of a family of simple §,-
submodules. There are, in general, many families
for which the sum is A/, and some give A;, as a

direct sum. We will now construct a family which is
important for our purposes, Let

A )= @ A%
(3 /2 el Mg
be a direct sum decomposition of A(g, f,) in simple
§,- submodules, where w; 1is the subrepresentation
of w on A and 7° the index set of the family (Afi )
0

For any i, € I° take a direct sum decomposition of
¢(®,)A, indexed by /] andlet I = U; .pol}.
o

Take afterwards, for any ¢, € I1,a direct sum de-
composition of ¢(®;)Al, indexed by I, let I% =
1
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U; CIlIzl ,and so on. We have ultimately a family of

simple §,-submodules indexed by I’ = I/R such tnat
A, = E,CI,AU) ywhere I =U,.yIi and R is the equi-
valence relatlon in7 obtamed by the identification of
i and j whenever A} L= AJ Notice that [£1 = @, as

well as [/ =@ andl =@, are not excluded (k i € N).
We call a principal family of A, any family of simple
8,-submodules with sum A/, which is defined as
above. If, moreover,A;, = A ,we say that (Aii)iel, is
a maximal principal family.

Now it is possible to associate a graph31,32 with the
w-sliced extension (&, p, 0),i.e., an ordered pair
(9, T),where

o =14l 4], € (AL)icr}

is the set of vertices and I" is a multivalued mapping
of 9 into $ defined as follows:
i ji+1 , i

I’AZ}JZ_]_ = {A’;klk e 1gj } foralli;e P, jeN.
We say that (9, I') is the graph associated with (8,p, 0)

by the principal family (A}ui)ia, ,or simply a graph

associated with (&, p, o). We will also speak of a
“graph of (§,p),” meaning a graph associated with an
w-sliced extension related to (&, p). If (Abi)iezf isa

maximal principal family, we call the graph associa-
ted by it a maximal graph. Clearly,if there is a
maximal graph associated with (&, p, ¢}, all other
graphs associated with (&, p, 0) are maximal. Note
that, for the same reasons as in Sec. 1A, a given graph
can be associated with many w-sliced extensions.

In the graphs associated with w-sliced extensions, a
pair of vertices can be joined either by zero,one,or
by two arcs (directed edges). In this latter case the
arcs have opposite directions. But, in general, we do
not have a digraph (directed graph), in the sense of
Ref. 32, since loops are allowed. Moreover, we con-
sider also infinite graphs and a graph with = ¢
which will be called the empty graph.

The graphs of extensions belonging to ¢,(®) (z € N)
are finite and without circuits (directed cycles and
loops in Ref. 32). The primitive essential extensions
have only one-vertex graphs, and the inessential
primitive extensions (the truly trivial extensions)
are characterized by the empty graph.

Define a subgraph of (§,I") as in Ref. 31 (induced sub-

graph in Ref. 32),i.e.,as a graph (&, T ), where
f® C Hand FR is ngen by

T.x=TxN{ forallx € 8.

£

Definition 7: Let (9,T) be the graph associated
with an w-sliced extension of & by @ by a principal
family (A% )lel, . We call a fundamental subgraph of

(9, T) the graph %, I‘ ,) where
-b' ={A1? llo EIO}.
o

In any graph (9, T') the transitive closure I of T
(Ref. 31) is a multivalued map of $ into 9 defined by
Fr=fHh}urxur2xuy... forallxe 9.
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T'x is the set of vertices reachable from x. With the
notation of Definition 7 we can define the set

T o iO
b= ‘oglo FA‘“io
and the subgraph (55T ~,) Then by definition (p,T) =
(&) ’ @/)

Define a vertex basis of a nonempty graph (,T)asa
minimal collection of vertices from which all ver-
tices are reachable, i.e.,as a set 8C $ such that

(i) b,b"cBandb = b imply b £1°b’ and b’ & Tb,
(ii) for any x € 9 there exists b€ B such that x € I'b.

It is clear that a graph (9, I') associated with an w-
sliced extension (&, p, o) has vertex bases which are
subsets of 9’. If (H,T') is a finite graph without cir-
cuits, then the vertex basis is unique, and all vertices
of this basis are of indegree 0 (Ref. 32), i.e., they are
not terminal points of any arc. This is the case for
the graphs of extensions belonging to € ,(®) (# € N*).

The set of w-sliced extensions can be enlarged by
removing the conditions ¢(®)8; = {0} and Im fz C®y
of Definition 3. We say that (8, p, o) is a quasi-w-
sliced extension of ® by @ with character & if its

(2; 8, G, @)-pseudococycle (¢,fy) € 33, (®, S,, G).
We have omitted, as usual, “for the Levi decomposi-
tion B = 8 » Ry It is clear that, also in the case of
quasi-w-sliced extensions, we can still speak of the
fundamental $,-module A((p fo) of (6,p,0),0f A,

the graph (9, T') associated with (8, p,0) by a pr1nc1-
pal family (4% )ZEI, and of the fundamental subgraph
of (9,1). Theorem 5 may be improved as follows.

Theorem 8: An extension (8,p) of ® by @ is irre-
ducible if and only if there is 2 maximal graph asso-
ciated with (8, p, o) for all w-sliced extensions
(8, p, o) related to (&, p).

Proof: The condition is a necessary one by Theo-
rem 5. In order to prove the converse, let (§,p) be
reducible. Then there exists an extension (8,p’) of
® by @’ C @ where §’ C § andp’ =plé&’. K (&,p’,0")
is a quasi-w-sliced extension with fundamental §,-
module A(¢’, f3), consider the section 0 = ¢’ (up to a
canonical monomorphlsm) of (8,p) over B. (§,p,0)
is also a quasi-w-sliced extension and, if A(gp, fz) is
its fundamental 8,-module, A(g, f;) = A(go ,f2), since
fo=f3 and p()la’' = ¢ (b)a for all b € ® a’c@’. Let
Y j)JEJ, be a principal family of A/, . There exists

a principal family (4 ),el, of A, with J C I and
Jf*1

(&) r) assoc1ated w1th (6,p,0) by this family, Let
(8, ©)be the graph associated with (§/,p’, ¢’) by
(AJ )]eJ' We have (8,6 = (&,T), since (ﬁ P ) =

(%', rb,) Suppose that for any w-sliced extensmn re-

lated to (&, p) there is an associated maximal graph.
Then @ is solvable, and every quasi-w-sliced exten-
sion is w-sliced. It follows that (9,T") is maximal
and 6’ = &, which is absurd. ®

I“1 for all JJ 1 ¢ J,and we consider the graph

In particular, we get from Theorem 8 that all primi-
tive extensions are irreducible. The outdegree of a
vertex is the cardinal number of the set of arcs with
initial points in the given vertex. The following result
is now obvious.
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Corollary: Let (§,p,0) be an w-sliced extension
of ® by G with fundamental $,-module A(gp, f,) and
let (9, T) be a graph associated with (§,p, o). Sup-
pose A(p,f,) C A_. I all vertices of the fundamental
subgraph of (9, T') have outdegrees 0, the extension
(8, p) is reducible.

Let (&, p) be an extension of a Lie algebra & with
Abelian radical ®,. The descending central series
(Ci®R),cy of ideals of the radical & of & can be of
much help to decide about the irreducibility of (&, p).
The subalgebras C'® are ideals of §. Moreover, for
i € N*, they are nilpotent and contained in G@. In fact,
let (&, p,0) be an w-sliced extension with fundamental
8,-module A(p, f). Any element of ® can be written
uniquely as o(r) + a,where v € ®,,a € @, and other-
wise

[06) + a,00r") + @'l ={la,a'] +pl)a’ — 9r')a
+fotr, 7} €a forally,r' € By,a,a’ € C.

Hence Ci® C @ for all i € N*.
We have the following possibilities:

(1) Cl®={0},i.e.,(8,p) is inessential. If (§,p) is
irreducible, it must be truly trivial,i.e.,@ = {o}.

(2) C1® = {0}, C1® C @. We can consider the in-
duced extension (6/C1®,p,) of ® by G/C1®, which is
inessential since ®&/C1® is Abelian. By the irreduci-
bility criterion (Theorem 7 of Ref.11) (8, p) is redu-
cible.

The previous analysis gives that C!® = @ is a neces-
sary condition for the irreducibility of an extension of
® (with Abelian radical) by G.

Theorvem 9: Let (&, p) be an extension of ® by @
and let ® = 8, © R, with Abelian ®,. Suppose that
the radical ® of & is nilpotent. In order that (&, p)
be irreducible, it is necessary and sufficient that
ClR =aG.

Proof: We must prove the sufficiency of the con-
dition. If @ = O} , the statement is obviously true.
Suppose @ = {0}, C1® = @, and let (§,p,0) be an w-
sliced extension with fundamental §,-module Alp,fy).
By the structure theorem

R =O’v(R2)® A,

since C1® = G implies the nilpotency of @. There-
fore,

A = ClR = [Uy(R2)$0y(R2)] + [GU(RZ))A] + ClA

= [O'U(RZ),O'U(Rz)] + CZR,
where CiR,ClA are the vector spaces underlying
Ci®,C1la.
In general,

CR = (ado,R 3)) 0, (R,) + C/*1R  for allj € N,

and
m

A =72 (ado,R,)) 0, (R,) + C™1R for allm € N*,
j=1

2.3)
where

(adov(Rz))jcv(Rz) = [UU(Rz), [Ou (Rz),
o, Ry),0,R] -]

{with j Lie products). ® being nilpotent, there exists
ann € N* such that C**1 ® = {0} . It follows from
(2. 3) that

n-1
A, = Z:%) (ﬂi((Rz)A(ﬁo,fz)-

As this is true for any w-sliced extension related to
(8,p), by Theorem 8 (8,p) is irreducible.®

Notice that if the radical &, of ® is an Abelian Lie
algebra, the necessary conditions of Theorem 7 be-
come sufficient since they imply C1® = @ with &
nilpotent,i.e.,

Theorem 10: Let (§,p,0) be an w-sliced extension
of ® by @ with fundamental $,-module A(g,f,). Sup-
pose further that the radical ®, of G is Abelian,

Then (&, p) belongs to ¢ ,(®) (» € N*) if and only if

on(Ry) Ag, fp) = {0},  @i(®R,)A(e,f,) = {0}

forallji<n

and
n-1

A, = Z)O PHRy) Ale, f5).

This theorem is particularly significant for the case
of the Lie algebras of the Poingaré and Euclidean
groups which have Abelian radical. The extensions of
these Lie algebras will be considered in Paper IL

ACKNOWLEDGMENTS

This paper is based partly on a doctoral dissertation
presented to the University of Louvain. The author
expresses his gratitude to Professor D. Speiser for
his guidance in this research and for the many stimu-
lating conversations. He also has the pleasure to
thank Professor F.Cerulus, Professor A. Janner,
Professor G.Emch, and Dr. T. Janssen for enlighten-
ing discussions and critical remarks. The author
acknowledges gratefully the Instituut voor Theore-
tische Fysika, Katholieke Universiteit Nijmegen,
where the paper was completed, for the warm hospi-
tality extended to him.

APPENDIX A

We consider the four-dimensional nilpotent Lie alge-
bra @ generated by the basis {a,, a,, a5, a,} with the
Lie products

[ay, a3] = [ay, a4] = [ay, a5]
= [ay, a4] =[ag,a4] = 0.

We see that €(Q) is generated by a; and a4. In order
to compute D(Q),I(®@), and A(Q), we first determine
Z1(Q,A,4),BYA,A,,),H1(Q, A,,) and then the com-
mutators of the obtained derivations. D(Q) is the ten-
dimensional Lie algebra generated by the basis
{D}1¢ic10 defined in Table I. The Lie products are
given in Table II.

]
(a1, ag] = ay,

Dy and D, generate the Abelian Lie algebra I(@),

{Dj 4¢jc10 generates the seven-dimensional radical

® “of D(@),and {D,D,, D5} a (simple) Levi subalgebra.
Note that D1® is generated by {D,,D 5, Dg,Dg,D 1o}
and D2® = I(@),but ® is not nilpotent.
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TABLE L. Action of the basis {D;}, <, <10 of D(G) on the basis
{aj}ls;$4 of @

D,a].
D, a, a a, a a,
D, 3a, za, 0 0
D, 3ay - 304, 0 0
D, ta, — 38, 0 0
Dy ay 0 0 0
Dy 0 Qg 0 0
Dg 0 0 ay 0
D, 0 [ as 0
Dy 20, 20y 0 ay
Dy 0 ay 0
Dy, — ay 0 0

A(Q) is the eight-dimensional Lie algebra generated
by a basis {A ], ;. with the Lie products obtained
from those of D(Q) by changing D, into A, for

1< % < 8 and putting Dg =D, = 0.

Now we will study three particularly interesting
examples of extensions of ® by @, where ® is the
Abelian Lie algebra generated by b and b’. Notice
that ext(®, @, ®) # ¢ for all & € hom(®, A(®)), since
H3(®, C(a),) = {0}. Moreover, any (2;®, @, ®)-pseudo-
cochain is a (2; ®, G, ®)-pseudococycle.

(1) Define & < hom(®, A(Q)) by (b) = A, and
©(b’') = A,. Then any prerepresentation ¢ lifted over
& is given by

¢b) =Dy + aDgy + D4,
and

o) =Dg + a'Dg + B'Dy,
But

[‘P(b),(P(b')] =D,

i.e.,we have no ¢ € hom(®,D(®)) lifted over ¢, and
all extensions of ® by @ with character ¢ are essen-
tial. ¢ is a proper prerepresentation associated with
a bilinear alternating map f, given by

(v,6 € F),

(a,a’,B8,8' € F).

fob,b) = ag + vaz + ba,

and (¢,f,) € 3 2(®, @). According to the discussion in
Sec. 1B, a complete set of (2;®, @, d)-pseudococycles
can be constructed if we compute a complete set of

(2;®, C(@),)-cocycles. The central character deter-
mined by ¢ satisfies
¥b)=0, ¥b)a;=ay,

(alfl)(b; b’) = €a,

\If(b')a4 =0,
and
(ecF)

gives an arbitrary element of B2(®, C(?),). There-
fore,

@®)=Dy, ¢(b') = Dy,

2@, @) ={(o,f,)
] ‘sz fz(byb’)=a2 +Ya3(YEF) ,

i.e.,we have a set equipollent to F of equivalence
classes of (2;®, @, ®)-pseudococycles. The corres-
ponding equivalence classes of extensions are con-
structed by means of the bijection (1. 3).

(2) Choose ¢ = 0. Then any prerepresentation ¢
lifted over & is given by ¢(b) = aDy + 8D;, and
w(b')= a,DQ +B’D10 (a, a’)ﬁyﬁ’ S F);

i.e., ¢ is a representation. If (¢,f,) € 32(®, @), then

Imf, € €(Q), and therefore
f,@,8) = yaz + ba, (6 € F).

Consider a particular ¢ given by ¢(b) = D, and

»@®’) =D, Any f; € L(®, @) such that ¢ = ad - f;

satisfies

f1) = ay +y'az + &ay, f100")=ay + y'ag + 6’a,

(v, 8,8 € F),
and thus

(6(0) /)0, 0") + [f10),/,06)] = a,.

Hence (0, 0) # (¢, 0), and we have two different equiva-
lence classes of inessential extensions. This is in
agreement with the Corollary to Proposition 2, since
(G, ad) is an essential extension of 1(&) by €(@).
Actually, if we proceed as in (1), we obtain a set equi-
pollent to F of equivalence classes of inessential ex-
tensions which is a proper subset of ext(®,@,0).

(3) Let & be givenby ®(b) = A, and &(b’) = A, and
proceed as in (1). Any ¢ lifted over & is a represen-
tation of @ into D(Q@). Consider ¢, ¢’ € hom(®,D(Q))
given by

TABLE II. Lie products of the basis elements D; (1 < i < 10) defined in Table I.

[Diy Dj]

D; b D, Dy Dy Dy Dg D Dg Dy Dyo
D, 0 Dy D, — 3Dy — D, 0 0 0 3010 3Dg
D, — Dy 0 Dy 2Dg — 5Dy 0 0 0 iD, — 1D,
Dy - D, —D; ()} — 4D, 0 0 0 2Dg 0
D, 2Dg — 3D 3D, 0 Dy, — Dy 3D, 0 0
Dy 3Dy 2Dy —2D; 0 — Dy — Ds zD; 0 0
Dy 0 0 0 — Dy, 0 Dg — Dy 0 0
D, 0 0 0 D, ~ Dy 0 0 0 0
Dy 0 0 0 -~ %D, — 3Dg Dy 0 0 3Dg Dy,
Dy - %Dlo - %Dm - éDe 0 0 0 — 2Dy 0 0
Dy — 3D, Dy 0 0 0 —Dio 0 0
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¢{®’)=D5; and
@'(b') = D5 + Dy.

Qﬁ(b) = D49
¢’ (b) = D4a
((P, 0)) ((P’a 0) = 8%(035 &) and (&9) = ((P', 0); hence we
have two different equivalence classes of inessential

extensions. All elements of ext(®, @, ®) are actually
equivalence classes of inessential extensions.

APPENDIX B

Let I, be the canonical epimorphism D(@)—>A(@)
and let ¢ be a given prerepresentation of & into D(G).
Consider the following sets

62(®, @) 7
_{( £l 2 € 42 @); [o®), 9] = ¢(2,6'D
=72 + adf,(,b’) for allb,b’c ® )’

8%(&’ G’) = @%«By G‘) ﬂgﬁaw(&, @),

where A,(®,Q) is the vector space of the bilinear
alternating maps of @ X ® into Q.

If, besides, ¢ |$ = w is a representation of § C & into
D{@), we can also consider

€2(®,8,8) = c2(®, 8) N€E ., .(3,3,a),
32(®,8,0) = B2(®, @) N¢E Eaonu(®,8,0).

The equivalence relations R in 83%(®,G) and R(w) in
32 ,(®,8,8) give rise,l! respectively, to the equiva-
lence relations R’ in 32(®,@) and R'(¢|8) in

32(®, ,@) as follows:

R’: We say that (¢,/,), (¢,/3) € 82(®,8) are equiva-
lent if there exists f; € L(®,&) such that Imf; € €(@)
and

fob,b") = fo(b,b") + (6,(9)f1)(b,b") foralld,b'cB.

(B1)

R'(¢ |8): We say that (¢, f,), (¢,f3) € 3%,(05,5,(1) are
equivalent if there exists f; € L(®,@)(¢ | $)-orthogo-
nal to § such that Imf; C €(G) and (B1) is satisfied.

Now it is possible to define

92(®,8) = 82(®,G)/R’
and
92(®,,0) = 3%(®,S,8)/R'(¢ |8),

and to state the following.

Theorem: Let @ and ® be Lie algebras and let
& < hom(®, A(@)). Suppose that D is an ideal of @
such that /D is semisimple, and let § be a sub-
algebra of ® isomorphic to /D by the canonical epi-
morphism ® —» ®/D. Then there are a prerepresen-
tation ¢ of ® into D(®) lifted over &, such that ¢ |$
is a representation isomorphically lifted over ¢ |8,
and a bijection

93®,0) ~ 92(®, 5,9).

Proof: Let (¢,fy) € 3?& [®, 8, G). I for any other
element (¢',f3) of 83 (®, S, @) such that (g,f) *

(¢’,/4) (mod R{w)) there exists (¢,f4) € (¢, f4)
(mod R(w)} we have a bijection

93 ,.@®,s,8)>> 92(®,8,0) (B2)
given by (¢, f2) (mod R(w)) (¢, /2) (mod R'(w)). This
requires the existence of f; € L(®,83) w-orthogonal to
$ such that

@'(b) = @(b) + adf, (), f3(0,d") = (b, b")

+ (B (@), b)) +[f,(8),f1(b")] for all b,b'(;s(;?,.

By Lemma 1 and the techniques of the proof of Theo-
rem 2 of Ref. 11, there exists /| € L(®, @) which satis-
fies (B3), and this implies f](s) € €(@) and (6,{¢)f{),

= 0 for all s € 8.

We need the following result.

Lemma: Let ®, @, D, 3, and & be as in the theorem,
Suppose, moreover, that ¢ is a prerepresentation of
® into D(@) lifted over & which satisfies

[@(s), o®)] = o([s,b])

and let f; € L(®,Q) be such that Im(f} |$) € C(@Q),
(Gl(qo)fl’t =0foralls € 8.

There exists g; € Z1(®, C(@),), ¥ being the central
character determined by &, such that (f]), = (g,),
and s{¢)'f; = s(g) g, foralls e 8,

forallse§, be @,

Proof: The proof is analogous to that of Lemma 3
of Ref. 11, We equip L(®, G} with the $-module struc-
ture associated with the representation Z: 8§ —
SL(L(B, @) given by Z(s)hy = s(@)h, for all i, €
L{®,&@). Then, 6,(¢)C(G) becomes an $-submodule of
(L(®, @));. Proceeding as in the proof of Lemma 3 of
Ref. 11, we find g; € Z1(®, C(G),) such that g; = g}

+ 6p(@)a,a € C(@),and (f}), = (gy) for all s € §. But
(6,(e)f1); = (61(@)gy)s = 0, and hence s(g)'f; = s(¢)'g;
by (II1.4) of Ref. 11, &

We have an f; € L{®, @), w-orthogonal to § and satis-
fying (B3), if we put f; = f{ — &;. This proves the
existence of the bijection (B2), which is obviously
true also if %, (®,5,08) = §. Besides, the reduction
theorem supplies us with a representation w of § into
D(@) lifted over @ |$ and with a bijection

93(®, 0> 92 ,(®,5,0).

w can be chosen isomorphically lifted over & |8. This
follows from the proof of the reduction theorem,1
Combining these results we obtain the statement.

The meaning of the theorem is the following: A com-
plete set of (2; ®, @, ®)-pseudococycles is given by a
complete set of elements of 32(®,$,Q) [for some pre-
representation ¢ of @ into D((f)]. Notice that if we
pick out one element of this latter set, say (¢,g,),and
we consider any other element of it, say (¢,/,), then
hy = fy — g, satisfies 6,(p)ky, = 0 and Imk, & C(Q).
This gives the connection with the analysis of Sec. 1B.
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The results of a preceding paper on Lie algebra extensions and sliced extensions are applied to the Lie alge-

bras §(3), ®, and § of the Euclidean, resp. Poincaré and Galilean groups. The primitive extensions are analyzed
in detail. A procedure for the construction of irreducible extensions is illustrated by some examples, using dia-
grams which picture the graphs of the extensions. It is proved that all extensions by &(3), ®, and § are inessen-

tial.
INTRODUC TION

In the previous paper,l hereafter referred to as I, we
have explored the fundamental problems of Lie alge-
bra extension theory. Our principal aim was to get
some hints for the construction of extensions. The
results so obtained are especially useful for exten-
sions of Lie algebras with nontrivial Levi subalge-
bras, a property typical of many Lie algebras used in
physics. This is the case, for example, of the Eucli-
dean, Poincaré, and Galilean algebras, i.e., of the
(real) Lie algebras §(8), @, and § of the Euclidean
group of a three-dimensional Euclidean space E,,
resp. of the (ten-dimensional) Poincaré and Galilean
groups. In this paper we apply the results of I to &(3),
®,and G.

The paper is organized as follows. Section 1 is de-
voted to the extensions of §(3) with special emphasis
on the irreducible ones. We study the primitive ex-
tensions and prove that the graphs of irreducible ex-
tensions are all finite and without circuits.

In Sec. 2 we consider extensions of ®. A close ana-
logy with the results of Sec.1 appears in the most
cases. One important discrepancy is pointed out.

Section 3 concerns extensions of §. Here, the prob-
lem is more involved. The primitive extensions are
analyzed in detail. In particular, we show explicitly
how the essential primitive extensions of § by a one-
dimensional Lie algebra arise from trivial extensions
of @ when the In6nii-Wigner contraction of ® in § is
performed. The graphs of irreducible extensions of
G may allow circuits. We give the example of one
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finite graph associated with an w-sliced extension of
G and having a loop.

In Sec. 4 we prove that all extensions by &(3), @, and
G are inessential. The proof requires some results,
collected in the Appendix, about the Lie algebras
D(6(3)), D(®), and D(S).

The conventions and the notation of T are used through-
out the paper. However, if the contrary is not explicit-
ly stated, the base field is always R, the field of real
numbers. The metric and the totally antisymmetric
tensors are denoted by the usual symbols g, resp.e€.

1. EXTENSIONS OF §(3)

The Lie algebra §(3) has a well-known Levi decom-
position

8(3) = $O(3) 4 T(3),

where $0(3) and 7(3) are, respectively, the Lie alge-
bras of the (proper) rotation and translation groups
of E,. We choose a basis {7}, ; of $0(3) and a
basis {t;} ;<3 of T(3),1n such a way that {7, t;}; 5
is a basis of (3) with the Lie products

[7,7]= ?%jk’%» [, 4] = ?eijktk’ [4,4]=0.

In order to apply the results of I, we consider stan-
dard representatives of the isomorphism classes of
simple 80(3)-modules constructed as follows. Let
() (27 € N) be an irreducible continuous complex
representation of SU(2) on a (complex) vector space
D) of dimension (2j + 1). For example, we can take
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(real) Lie algebras §(8), @, and § of the Euclidean
group of a three-dimensional Euclidean space E,,
resp. of the (ten-dimensional) Poincaré and Galilean
groups. In this paper we apply the results of I to &(3),
®,and G.
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voted to the extensions of §(3) with special emphasis
on the irreducible ones. We study the primitive ex-
tensions and prove that the graphs of irreducible ex-
tensions are all finite and without circuits.

In Sec. 2 we consider extensions of ®. A close ana-
logy with the results of Sec.1 appears in the most
cases. One important discrepancy is pointed out.

Section 3 concerns extensions of §. Here, the prob-
lem is more involved. The primitive extensions are
analyzed in detail. In particular, we show explicitly
how the essential primitive extensions of § by a one-
dimensional Lie algebra arise from trivial extensions
of @ when the In6nii-Wigner contraction of ® in § is
performed. The graphs of irreducible extensions of
G may allow circuits. We give the example of one
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finite graph associated with an w-sliced extension of
G and having a loop.

In Sec. 4 we prove that all extensions by &(3), @, and
G are inessential. The proof requires some results,
collected in the Appendix, about the Lie algebras
D(6(3)), D(®), and D(S).

The conventions and the notation of T are used through-
out the paper. However, if the contrary is not explicit-
ly stated, the base field is always R, the field of real
numbers. The metric and the totally antisymmetric
tensors are denoted by the usual symbols g, resp.e€.

1. EXTENSIONS OF §(3)

The Lie algebra §(3) has a well-known Levi decom-
position

8(3) = $O(3) 4 T(3),

where $0(3) and 7(3) are, respectively, the Lie alge-
bras of the (proper) rotation and translation groups
of E,. We choose a basis {7}, ; of $0(3) and a
basis {t;} ;<3 of T(3),1n such a way that {7, t;}; 5
is a basis of (3) with the Lie products

[7,7]= ?%jk’%» [, 4] = ?eijktk’ [4,4]=0.

In order to apply the results of I, we consider stan-
dard representatives of the isomorphism classes of
simple 80(3)-modules constructed as follows. Let
() (27 € N) be an irreducible continuous complex
representation of SU(2) on a (complex) vector space
D) of dimension (2j + 1). For example, we can take
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as © (7 the spinor representation €,; (on S, ;) de~
fined in Ref.2. As is well known, §0(3) is isomorphic
to the Lie algebra $U(2) of SU(2). Let ¢ be an iso-
morphism of $O(3) onto $U(2), and let d () be the
differential representation of 8U(2) associated with
9 (4, canonically obtained from the differential of ®¢J.3
Then d®(DoL is an irreducibie complex representa-
tion of $0(3) on D(/), For the sake of simplicity, we
still denote this representation by D (9, If j € N, we
get a Lie algebra representation of real type, and, if
jed{:,3,3, ...}, one of quaternionic type4 (potentially
real, resp. pseudoreal in the group terminology of
Wigner5). In the former case, there are isomorphic
real forms of () on the (2 + 1)-dimensional real
vector spaces of the fixed points of invariant anti-
involutions of the first kind4 (cf., however, Ref. 6), and
we can choose one such real form®U!} (on a vector
space DU)) for each je N. In the second case,D () in-
dyces canonically one irreducible real representation
DU} of $O(3) on the 2(2j + 1)-dimensional vector
space DU} obtained from D() by considering it as a

4 {3 :
real vector space. {D®{j}}2 N is a complete set of

representatives of the isomorphism classes of simple
$0(3)-modules.

An extension (&, p) of &(3) by an arbitrary Lie alge-
bra @ being given, we consider an w-sliced extension
(8, p, 0) with fundamental $0(3)-module A(g, f,). If
© is the representation of $§9(3) given by formula

2
(1.10) of I, AT(3),, is isomorphic to D&i}. It follows
th{ait A, f,) is a simple 80(3)~module isomorphic to
D ) too, or A(g, fp) = {0}. Hence, by Proposition 4 of

T

I, if the isotypical component of type D§1}} of the 80 (3)-

module A has length 0, then all extensions of §(3) by
@ with character ® = Ilg°p are inessential. Pursuing
the analysis of (&, p), we find that (g, ,) € 83 ,(8(8),
$0(3), @) requires

,Zk €5 )f5(E, 1) = 0. (1.1)
L

If f, = 0, (1.1) is always satisfied. If A(g, f,) = {0},
(,D(T%3))A((p, f5) is isomorphic to an $0(3)-submodule
2

{1}
of ® DSDU}'

where
a = %Ekeijkfz(tj; t];)'

2+

This basis satisfies

Take a basis {a,},; 5 of A(g,f,) =10},

(1.2)

¢(r;)a; =27 €0, foralli,je{1,2,3},
*
and (1. 1) becomes

Zio(t)a; = 0. (1.1
i

Tables I and II, whose meaning is self-evident, show
immediately the consequence of condition (1.1'):
¢(T(3))A(¢, f,) does not have any $0(3)-submodule

isomorphic to D) . Notice that, in the tables,
(G €40, 1,2, 3}) stands also for every representation
isomorphic to ® 7},

Now suppose that, in the above extension (§, p), @ is
an Abelian Lie algebra. We can write f, € Z2(8(3),
80(3), A,), after identification of ¢ with ®,7,8 Let
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£ € Z2(8(3), 30(3), A,) with A®, f3) = A&, f,). If
fa # 0, consider the R-linear map « of A(®, f,) onto
itself given by

Kfz(ti, tj) = le(ti ) t]-)

Actually « is an $0(3)~endomorphism of A(®, f,),
since it satisfies

for alli,j { 1,2, 3}.

k®(r)a = d(r)ka for allr € 80(3), a € A(®, f,),

By Schur's lemma? « is then an $0(3)-automorphism.
Take the complexifications 80(3), and A(®, f,) ) of
$0(3), resp. A(®, f,). There is a unique $0(3))-
automorphism K, such that the following diagram is
commutative:

A2, f,) —-———-—--—>A(<I),f2)(c)
K : ke
A®, fo) ~-=----->4(2, o)

with £ the canonical complexification map. A(®, f,)
is a simple $0(3);-module and, by a well-known
corollary to Schur's lemma, K¢y = AyLys e

(A €C, X #0). Then k= AIA@,JZ) (LeR, x=0),1.e,,
J2 = Xfy. This result can also be easily found by
applying the same method which will be used in Sec. 2
for the case of £-modules. Notice that A f, = \’f, and
fo # 0 imply A = X', because Afy = A fy. If we consider

the vector space A4’ = Imf, = {0} and if we define &'
8(3) 2 GL(4’) by

P’ = e’
() =0

for allr € 80(3),a’ € A/,
for all ¢t € 7(3),

then we get

H2(8(3), 86(3), A%))
{)@2 X € R; by € Ay(6(3), A},) with }

hyle,e') = fyle,e’) for all e, e’ € 6(3)
(1.3)

where A,(8(3), A},) is the vector space of bilinear
alternating maps of 6(3) x §(3) into A}, . (1.3) is
obviously true for f, = 0too. Furthermore, if f, = 0,
the existence of f; € C1(6(3), $0(3), 4,) and of a pair
of elements £, #’ € 7(3) such that (5,1;)(t, ') € A%, f,)
and (6,f,)(t,#) # 0 is a necessary and sufficient con-
dition in order that (&, p) be an equivalence class of
inessential extensions.

Keeping the same notations as above, let (§,p) be a
primitive extension. By Theorem 2 of 1 it is an ex-
tengion with Abelian kernel, and by definition A(e, f,)
=A,i.e.,@ is three-dimensional or {0}. On account
of the fact that 7(3) is the nilradical of §(3), ®(7(3))
= {0}. If (8,p) is essential, {0(r)), 0(t)), @}y, 4e3 1S
a basis of & with a, defined by (1. 2) and with the Lie
products

[o(r), o(r)] = ? €59 ("),

[o0r), o(t))] = ? €,540(ty),
[o(r), a;} = > €, [0(), 2] =0,
%
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Basis elements of some $0(3)-submodules (up to canonical identifications) of the pth tensorial power £ Dg%,} r =1,2,3).

1 2 0 _ 0. plld . pR 3 {0 ol 4 il ay w0 1
Dy ® Dppy = Dyioy = Dy @ Dmlz) ® D‘.D(l} = (Dfs(l) ®. :D(O)) @ (qu{l) ®Dm(1)) ¢ Dm{l) ®D(§>(§¥)
1] 10) {1} {11} _ plllo} 111} .. {113
Dy ®Ds{g(o§ DYy » DY) = oy ® DEG" © D
{10} [ RN} {12 {101} {110} 11y
Dy Dy Dz} = Dy D) Dy
— oD
e&lz) = e{l ® eél)
)
+ egl 2 egl)
(12) — oD (D
efl? = el @ el
1) 1)
+efV el
(12) - o (D [6))
83 = e3 ® e1
(6] (D
+ei@ed
{€§1D}14i63 {ef100} (15 {ef11P} 1 cics
where where where
— —_ - 1
{eD} c1es (10 = Zi)(egl) D = 02 = e ®e® oD = ¢ 2110 — Zi)(eﬁl) o1y = g €le®
® el(])) = ,-Zﬁ eijk,\«ejgl) — egl) ® e;l) ® 1O ® elgn)) ® e(kn))
®efV)
12) — o (D g )
eg =ePoel
— e [¢)]
e ®ed
[o(2), o(t))] = ) €, lapa]=0. and we will hereafter refer to it as to a “diagram of
k

The (maximal) graph associated with (8, p, ©) can be
represented by means of the one-vertex diagram

{1

o, (1.4)
whose meaning is self-evident. The elements of
H2(8(3), $0(3), A,) are given by (1. 3), and may be
bijectively associated with those of Ext(8(3), A,)
[= Ext(8(3), @, $)] by means of the Hochschild-Serre
theorem and of the bijection (1.3) of I. If f, = 0, we
get in this manner the equivalence class of inessential
primitive extensions (truly trivial extensions). If
fo = 0,0nly for X = 0 we have classes of essential
primitive extensions. From remark (2) at the end of
Sec.1 of I we infer that the essential primitive ex-
tensions of §(3) are all of the same type. We empha-
size that the same diagram (1, 4) actually represents
the graphs of all essential primitive extensions, i.e.,
of all extensions belonging to € {(6(3)).

The graphs of the extensions belonging to € ,(6(3))
are pictured in Table II. With any irreducible w-
sliced extension (&, p, 0) is associated one diagram,
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(&,p).” 1t is a diagram which represents graphs of
(&, p). But, naturally, there are a lot of extensions
(even nonequivalent) with the same diagram. The
meaning of Table Il will be cleared by the following
example. Take the diagram

{11 {1}
@ >0

Suppose that it represents the graph associated with
an irreducible w-sliced extension (8,p, d) of §(3) by
@ with fundamental $0(3)-module A(g, f,). Then we
read from (1.5) that

A, =Ale, f)) @A,

(1.5)

where «’ is the subrepresentation of w on A" A(g, f,)
and A/, are both isomorphic to D%ﬂ}, and the base

{1}
vertex A(e¢, f,) is symbolized by ©. The arrow gives
the action of ¢(T(3)), i.e., p(T(3)) Alo, f,) = A/,

¢2(T(3)A(p, f,) ={0}. Tables I and II show that if
{a;}1<i<5 is the basis of A(e,f,) given by (1.2),
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The basis {eil)}lsi <3 of D%gl) satisties 2 (r))e

(&)

11 521

w . .
i :Zk,‘ €xCe )0,k e {1,2,3}).

{1] 112} 1121) o {122} {123}
DY, @ DEZ = DE3Y 0 p§Z® o DS
112 {121} {122 {123}
Dy Dy Dayy Dayiy

_(112)_ (1 (1D
ey =e] ®e2
[€V] Qav
+ e2 ®el
(112) — (D [6B))
ey = e, ®e3
[¢8) an
+ ey ®e2
(112) _ (D 11
ey =ey ®e1

[V} 1y
+ ey ®e3

(112) . (D (11)
€y =€y 6961

— e v
92 ®e2

(112 _ ayv
e5 _91 ®e1

— e av
23 ®e3

35121) = 3e(21)®e§12)

+ 3e{P w0 e(l?D

+2eW @ (e12 + e{12)
65121) = 3851) & 3(212)

+ 3¢V mell2

_ 2651) ® (26112) — eglz))
eglzl) = 3e(11) & eglz)

+ 3¢V @ el

(1) (12) _ 9,(12)
+ 2e§ 60(e4 2eil?)

i(122) — (D (12
€{122) = ¢V % ef

e 12
el ® el

123) — (1) 12
ef _eg % e§

1 12)
+e{l = ef

. 9D 12)
2e3 ®e,

(122) _ (D (12
egt?? = eV mef

— el (12)
23 ® (23

(123) — (D (12
e, = e2 R ey

_ e g2
21 Q’Ce4

+ zegl) ® (e4(12) — e(512))

122) — (1) @ (12
eg = €3 €3
— oD e12)

51 €y

1) (12)
+ Zez ®ey

(122) — _ (D (12)
€, =—¢&; ®62

_ e;l) ® 91(312)

+ 2e{D 0 {12
eguz) = egl) ® e(112)
+ePo eél?)

. 1) 12)
2P ® e

123) — (D) 12
e{123 = eV ¢f

—_ e} 12
e1 ® ey

(123) — (D (12
e, =e} @ e

(&3] (12
+ 22 ® e,

(123) — (V) 12
ey =eiV®e;
[6}] (12 |
+ ey ® ey
1 12
+ ef )@ ef
(123) = oD (12
e =ej ® 12
—_ elD (12
e:(3 ® €,
[¢}) 12
+ e ®e5
(123) = (1 12)
ey ey’ ® e;
el (12
e] ® 12

— el 12
eg » el

{a}h1g3 With @) = 25, . €,0(8)a, is a basis of 4),.
The Lie algebra @ is Abelian, as follows from

Theorems 3 and 5 of 1.

Actually, by th

e same theo-

rems, all extensions belonging to ¢,(8(3)) have Abe-
liankernels. However, the kernelof an extension be-
longing to & 5(8(3)) can be non-Abelian. Take, for

example, the diagram

{1}

{1}

{1}

[o]

© o

(1.6)

Keeping the same notation as before, we get

A, =Alg, L) B A, ®A

where A”

wr

wn s

too is isomorphic to D%t}}. Besides,

(pz(T(s))A((p, f2) = AZ)H ) ¢3(T(3))A((p9 fz) = {0 ] a-nd

there is a basis {al};.;.; of A7, where a} =

,-{</7 (t])

x ¢(t)a — ¢(t)o(t)a;}. The diagram (1.6) does not
give the Lie algebra structure of @: It determines
only the $O(3)~module structure of A ,. Some dia-
grams represent graphs of extensions with Abelian
kernels as well as graphs of extensions with non-

Abelian kernels. However, this is not the case of dia-
gram (1. 6). Notice that if G is an Abelian, resp.non-
Abelian Lie algebra, the Lie algebra structure of &
requires, for all ¢, ' € 7(3),

[@(), (t")] = 0,
[(p(t)y (p(t’)] = adf2 (t, t’)-

Furthermore, if Alwl and Az‘u2 are arbitrary $O(3)-

resp.

submodules of A , then [Alwl,Asz] must be an $O(3)-
submodule of A too. In the case of diagram (1.6),
by Theorems 3 and 5 of I and on account of Schur's
lemma, we must have

[a;,a;] = )\Zk) €, [aa;]=0, [a,a]]=0,

[ai, a;] =0, [a:'r a;,] =0, [‘12': a;] = 0)

for all 4,j € {1, 2, 3},
where A € R and is different from 0.

The assumptions of Theorems 6, 9, and 10 of I are
satisfied by all irreducible extensions of §(3) which
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TABLE II. Diagonal action of S8(3) on the basis elements of *ngg,, {p = 1,2, 3) given in Table 1.
o - m(r,,)b({ 3
. At Sem’ e plion o
B plor = pw =T ‘
‘ ! [IERTHS ' tetiin G120 BB = (1D (12 pl122) B = pli2n
i i i H H i i TV
e © )
E(,],)(jfj,, LL ) n{v l)é“ hy h@ b . ngo p@ b(523 /:(13) b ;3) b §3) U< b éa) b ;3)
T v _ R 3y _ ¢ @ G — :
D) 0 4 bg b 5327 zu;gz) 022) b2 b;z} b§2) - hgﬂ bf;” ‘~1;<53> ~b§3) 2(1)53)-1)23)) 31,(13> + @ -0+ P
i) o —b{P 0 Hiw — b2 b BHP @ —BP HDpD w 2 — %@ BP+ 0
?‘f""“ 0 bg»  —p{V 0 “213_512) —b(@ @ W@ pP bg:f _3b§3> —0@ O W P+ @

TABLE HI. Diagrams of the extensions belonging to ¢ ,{&(3)).

{1} {1}
©® s0
{1} {2}

®

then belong to € ,(8(3)) (n €N) and are extensions by
nilpotent Lie algebras. Their graphs are finite, with~
out circuits and, for n # 0, with vertex bas;as consist-

ing of the unique element represented by (©. There-
fore, all these graphs are weakly connected.10,11
They can be pictured by diagrams as in the case of
¢,(6(3)). We emphasize that, on account of Theorem
7 of I, the 89(3)-module A , determined by an arbit-
rary w-sliced irreducible extension is isomorphic to
the direct sum of a family of simple §0(3)-modules

belonging to {D:é’gﬂ}m .
i

2. EXTENSIONS OF @

Lie algebra extensions of @ have been dealt with in
other papers.?,8,12 Here, we will merely recall some
results and give a few details.

We consider the Levi decomposition
P=L7,

where £ and 7 are, respectively, the Lie algebras of
the Lorentz and of the translation groups of the four-
dimensional Minkowskian space of relativistic space~
time events. Let {1 ,, ¢, }oc, , p<3 be the usual basis
of @ with the Lie products

[l;w’ lpo] = Zuolvo t Brolyp — Buolio — Zuplios

(Lt =gty — 8upts [t t.]=0.
{4 Yocures and {f,}ococa are, respectively, bases of
£ and g .
Take an irreducible continuous complex representa-
tion ® Y199(2j,, 2, € N) of SL(2, C) on a vector
space D792 of dimension (2j, + 1)(2j, + 1), for
example, the spinor representation Sy; , jz(on Raj.2 ].2)

of Ref. 2. £ being isomorphic to $§£(2,C) [the Lie
algebra of SL(2, C)], and proceeding as we did in

J. Math. Phys., Vol. 13, No. 4, April 1972

Sec. 1 for the representations of $0(3), we get a repre-
sentation of £ on D%*2) gtill denoted D ('72), Sup-
pose first j; =j, =j.DU.) ig of real type and we can
choose one real form D4} of U3 on a vector

space D1/.7} defined as referred in Sec.1. If j; = jy,

® U172 ig neither of real nor of quaternionic type,

and it induces a real representation {7172} on the
[2(2j, + 1)(2j, + 1) ]-dimensional real vector space

plivil obtained from D (1+2) by restriction of the
field C to R. A complete set of representatives of the
isomorphism classes of simple £-modules is given

by

f D%}%ﬁ?i}} 2j124,6N-4

1 7137,
Using the same notation as in Sec. 1, let now (6, p, 0)
be an w-sliced extension of @ by an arbitrary Lie
algebra @ and let A(g, f,) be its fundamental £-
module. A T, is isomorphic to D&ﬁr and this im~

plies that A(yp, f,) is isomorphic to Dsg{f(),} or

A(‘rp’fz) = {0}‘ Because of ((ps fz) €8 ?p.u(ﬂ)9 £, G‘)) we
get

22 €4po 9(EMa(t7,£°) = 0 for all e {0,1,2,3},
V.00

h

where
1T = 25 gTuh,.
v

It follows that there is no simple £-submodule of

o(T)A(9, f,) isomorphic to D&g‘zlﬁi and generated

by {22, 5.0 €4upo @(t)f2 (7, £9)}g e 3+ However,

@(TA(9, f,), which is isomorphic to an £-submodule
{1/2,1/2} 1,0} 5

of Dgy(1ss,1/e) ® Dy )» Can have one simple £-sub-

module isomorphic to D%]{{,g',llﬁf})

{22,005, L)} o< c3- Notice that, on account of

Proposition 4 of I, if the length of the isotypical com-

ponent of type Q&;ﬁ

® by G with character & are inessential (Proposition
3 of Ref. 8).

As usual, if @ is an Abelian Lie algebra we identify
¢ and & and we have f, € Z2(0,£,4,). Let f, = 0.
Taking f}, € Z2(®, £,4,) with A(®, f5) = A(®, f,), and
letting « be the R-linear map of A(®, f,) onto itself
given by

Kfpll, 1) = F3(t,s 1)

we conclude that « is an £~automorphism of A(®, f,)
by Schur's lemma. But now we can no more follow
the method of Sec. 1, since A(2, f,)(, is not a simple

and generated by

of A, is 0, then all extensions of

for all u, » €{0,1,2, 3},
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TABLE IV. Diagrams of the extensions belonging to ¢ ,(®)

{1’ 0} %, ?E
© >0
{1,0} e
© >0

{32
{1,0}/ﬂ
©
\;é

£¢y-module. However, the number of linearly inde-
pendent £-automorphisms of A(®, f,) is given by the

iength of the isotypical component of type Dsé?(;?,},} in
the second tensorial power @% D&;g%ﬁ As this length
is 2, and as we know that f, and f} are linearly inde-
pendent bilinear alternating maps of ® X @ into @ if
f5 is defined by

30,00 =0, f30,,t) =0,

= %E Guwufz(tr, tu)
T, U
for all g, v,p,0 €40,1,2,3},

LU )

we get
f3 =Xy, + X 13

Hence, with A’ = Tmf, = {0} and &': ® >§L(4’) given
by

A, <R}

& (a’ = 2()a’
() =0

forallle £,a’ ¢ A’,
forall t €7,
we obtain
H2(0, £, A},)

(Mhy + MBE | M X € Ry by, By € A,(QA},) with Z
= ho(p, ') = fo®0,0"), 15(p,P") ’

= F3(p,p") forallp,p’' € @ @.1)

and dim H2(@®, £, 4;,) = 2, and not 1 as stated in Ref.7.

1t follows also from (2.1) that (§_,£) is an equivalence
class of inessential extensions if and only if there are
a linear map f; € CY(@, &£, 4,) and a pair of elements
t, t' € T satisfying

(61f1)(t’ t,) = fz(ta t’)'

The extensions belonging to ¢, (@), i.e., the essential
primitive extensions of ®, have Abelian kernels of
dimension six. They can be constructed, using stan-
dard methods, starting from the elements of HZ(®, £,
A,), which are given by (2. 1) since ®(7) = {0}.7,8,12
{1,0}

© isthe diagram of the extensions belonging to
¢41(®), which are all of the same type.

In Table IV we list the diagrams of all extensions
belonging to €,(®). On account of Theorems 3 and 5
of I, €,(®) is again a set of extensions with Abelian
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kernels. Examples of extensions belonging to §4(®)
and with non~Abelian kernels were given in Ref. 8,
The irreducible extensions of ® satisfy the assump-
tions of Theorems 6, 9, and 10 of I (cf. Proposition

5 and Theorems 11, 12 of Ref. 8). Therefore, they
belong all to ¢, (®) (n € N); their graphs are finite and
without circuits, weakly connected and, for n =0,

{1,0}
® represents the unique element of their vertex

bases.

3. EXTENSIONS OF ¢

We choose a basis {7, 1, &, holy¢; ;03 Of § with the
Lie products

{7}’:1}] = %fijkykx {ni’njl =0, {iz’ {7} = 0’
[7im]= §€ijknk’ (ri, 4] = §€ijktk’ (7, ko] =0,
[, 4] =0, [, ko) = 4, (4, ko] = 0.

{rilicica {”j}ls]‘ss’ {hf1<re3 and {io) generate 30(3),
N(3), 7(3), and K which are, respectively, the Lie
algebras of the groups of space rotations, of Galilean
boosts, of space translations, and of time translations
of the four-dimensional space of nonrelativistic
space-time events, The radical of § is

Ry = J{3) b (T(3) @ %),
and we have a Levi decomposition

Let now {§, p, 0) be an w-sliced extension of § by an
arbitrary Lie algebra @, and let Ay, f,) be its funda-~

mental $0(3)-module. As AR, is isomorphic to an
$0/(3)- submodule of B, x sb%({} x DS, Alp,fy) is,

in general, not simple. Proposition 4 of I means in
this case that if the isotypical components of type

D), Dy, and DY, of the $0(3)- module A, have all
lengths 0, then every extension of § by @ with charac-

ter ® = llze@ is inessential.

Let f; € L{(§,®) be given by

fl(Ti) =0, fl(nj) =0, fl(fk) = “‘fg(nk,ho), fl(ho) =0
for alli,j,k € {1,2,3}.

f; is actually w-orthogonal to $0(3) and, moreover, it
satisfies

(51((P )fl)(nk: h()) zfg(nk; ho)

For that reason, we will hereafter suppose that
(6, p,0) has been chosen in such a way that

fn, k) = 0

for allk € {1, 2,3}

for alln €9UY3), k c 3. (3.1)

The conditions which must be satisfied by ¢ and Jo in
order that {¢,f,) € 3 ¢ (G, $0(3}, @) are now more in-
volved as in the cases of Secs.1 and 2. For all i,j,
ke {1,2,3} we get

Qp(ni)fz(”jy ﬂk) + w(nj)fz(ﬂk; ”i) + W(ﬂk)fz{”i, ﬂj} =0, (3.2)
(P(ti)fz(tj; tk) + g (tj;)fg(tk, tg') + @ (tk)fz(tg: t_,) =0, {3.3)
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@ () folng, m) + folny, 1)) — folm, 1) = 0, (3.4) Notice that, as

0 0)flt, o) + 0 () folho, &) + 9 i)yl t) =0, (3.5) [o@). ool =0 forallie {1,2,3},
@)l A, is an 80 (3)- monomorphism or 0 for each

: . + n, bty — f,(t,8) =0, 3.6 simple SO (3)- submodule A’ , of A_, on account of
¢ 0folly ho) + ¢ o) o, ) = Fo(h, ) 3.6) Schur's lemma. Formulas (3. 2)- (3. 8) give rise to

the following system of relations between elements
el m) + o) falny, ) + @) f5(5,5) =0, (3.7) of A(p,f,) and ¢ (®,)A(y,f,) which, if different from 0,

are basis elements constructed according to Tables
@) foln, b)) + cp(nj)fz(t,,,n,-) + o), 0, n)=0. (3.8) landIl

g) €9 )y, m,) = 0; (3.2)
”Zi Gp@ B E, 1) = 0; (3.3
]23 €09 (o) fo s, m,) = — 2?; €50S2 0%, by); (3.4
zg €50 0 (6 foltey o) + _23 €0 U)o, 1) = 0 (3.5
Zip () follss o) + i (ho)yly 1) = 0; (3.6

E STRANVACGRLY, +Z) €09 (o) fo(m, 1) = — EG,,JZ( AAE (3.6")

{0 o) f(ts, Bo) + @ () ot o)} + @ X Sy, 1) +Foy,8)} = 0,
{0 () folt 3 1) + @ () fo by, )} + @ M f (9, 85) + f g, )} = 0,
{p )yt b)) + @) fylts, o)} + @ UM fla, 1) +fplny, 85)} = 0, (3.6")
{<P (n1)f2(tp ho) — <P(n;g)f2(t2, ko)} + q’(ho){fz(”y ‘tl) ”"fz(”‘zy tz)} =0,
{0 &) folt1, hy) — @ 3) (g, )t + @ B foly, 1) — folng, 15)} = 0;

2 E €0 ), 1) + Z) €0 M) 158, 1) = 0; (3.7)

3 L eyGu @ ()alm 4) — 30 () foln, 1) +folng )] + 30 () falg, 1) + 50, )] + 20 () fylry, 1) — Fliz, )]
L% A
+ 20 () folry, 1) — falng, 1)1+ 4?90('51)]'2(";'; ) — 3 i}z)k zelijejkl(p(ni)fz(tk’ 4) =0,

3 2 e 0 03l 1) — {30 ) foltas ) +Sylts, )] + 3¢ () by, ) + Tl 1)]
W R
— 40 ()] 3, ) — folng, )] + 20 (W) folry, b)) — folng, )TH+ 4Z)<p(tz)fz(n,, ) 3.77)
- 3.2. . €15 € @ M) S5, 4) =0,
bR,

3 ) é}l € i€ q)(ti)fz(?'tk, tl) — {3(P(t1){f2(773y tl) +f2(n1, t3)] + 3(P(t2){f2(n2; tg) +f2(n3, tz)]
Lk,
+ 20 ()N S0y, 4) — folny, )]~ 4o () fo 0y, ) — folng, t3)]}+ 4Z£)(p(t3)f2(n,-, ) —3 i,_:%,z €561 ‘P(ni)fz(t(e’ ) =0;

{o@ ) fo(naty) + Folny, )] — @) folg, E3) +Folng, o) — 20 fong, ty) — folny, £)1}

- E{ez,,qo(tl)fz (4, ) + €55;0() fo(ny, )} + Z){ez,,cp(m)fz(tt, t) + €1;,;,0)f,¢, 1) = 0,
{cp(tz)[fz(nl,tz) + fylng, )] — @t fo(ng, ty) +f2(n1, t)] + 20 ) fo(ny, 1) — fo(ng, ty)]

— 200 ) folny, b)) — folng, t)]} — E{es,,cp(tz)fz(n,, t) + €555 0(5) folny, )}

+ iEj{e3,,¢(n2)f2(t,, £) + 62;]‘p(n3)f2(t;y t)} =0,
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{(»0 [fz(nzy )+f2(n3,t2)] - (P(t )[fz(

ty) + fo(ng, 1)) + 20(t,) fp(ny, ty) —
- E{Glz](p 3)f2( i ]) + €3zJ(p(t1 fz(np ]} + 2{611]¢(n3)f2(t;7 ]) + €3;](P(n f2 tu J)} - 0

fz ("3, 3)]}
(3‘7"1)

{- (P(tl)[fz(nz,ts) + fz(n3,t2)] - (P(tz)[fz(”m 1) +fz(”1, 3)] + 2‘P(t3)[f2(”1,t2) +f2(”2, 1)]}

— Z?{elijq)(tl)fz(”,, ])—€2U(P(t fz(n;: ]} + 2{61;]¢(n fz(t,, ])
i

{(/’ fz(nlytz) +f2(n2;t )] + ¢(t )[fz(
- 2{5111(0

Formulas (3.8’), (3.8"),and (3.8") are then obtained,
respectively, from (3.7),(3.7”), and (3.7") making
the substitutions n, «<— ¢, for all 7 € {1, 2, 3}. Notice
that the system of relations (3.6"), for example is
obtained from whatever one of its elements by appli-
cation of the $0(3)-module operations. Obviously,
the same statement is valid for each of the systems
(3.2)-(3.8").

Using the same notation as before, we suppose that
(8, p) is an essential primitive extension, and we
make the usual identifications of ® and ¢. As J(3) &
T'(3) is the nilradical of §, ®(9(3)) = &(7'(3)) = {0}.
Besides, by Schur's lemma,

<I>(h0) = 'yIA@ ('y €R)
(cf. Sec.1). We will prove that y = 0. In fact:

(@)@(h,) = 0Dy (3.6") if A, is 1somorphlc to D
i.e.,if 1t is generated by {b, }1< <5 With b
fz( t,) +f o, 1), 2—f2"2, )+f(n3’
b3_f2n3,t +f2”1:t3, fz"pt ?"mtz),
and by = fz(nl, t) — falng, ty 3 Analogously, 1fA is

isomorphic to D {(o} and it is generated by 2, f,(, , t,),
(3.6’) requires ®(k,) = 0.

(b) Let A, be isomorphic to D, [}}. Suppose y # 0 and
take f, € L(S @) w-~orthogonal to $0(3), given by
fl('r) = 0 fl(n) = 0 fl(t ) == (I/Y)fz(tk,h )

fl(h ) = 0 for all z,],k €{1,2,3}. A

(6171t hg) = Falty, ho),
we can then choose f, in such a way that
folt,h) =0 (3.10)

Besides, on account of (3.4'), (3.5'), (3.6"),and (3.9),
we get

(3.9)

pt2}
Gy E3H

forallt € T(3), h € %.

Y E}zeijkfz(rzj,n,,)=—z _Z’)ae,.jkfz(nj,tk), (3.11)
i i

Y ,Z;e €fa(t,t) =0, (3.12)
i

Y ,Z’Z €nfany, ty) = — E e 2, 1) (3.13)

If (3.10) is satisfied, (3.11)~(3. 13) require f, = 0.
As f, #0, y =0 and Dixiie o, ) =
X faolty ) = 0 for all i € {1, 2, 3}.

From the previous considerations we can infer that

(8,p) is an essential primitive extension if and only
if one of the following possibilities is satisfied.

Ej,kez]k

) +f2(n3;t )]
fz(n;, ]) — €345 @t 3)f2(n” ])} + 2{61”90 1)f2(t1,, J) €34; 9 @(n

ezijfp("z)fz(tp J)} =0,

— zﬁp(tz)[fz(nmt )+f2(n1, )]}

fz(tp ])} = 0

I

(1) A_is isomorphic to D{(z}} and it is generated by
{b }1<1< 5:
(2) A, is isomorphic to D
ag = Eifz nz’tt)
(3') A,,isomorphic to D(( 3), is generated by
{a}; <ic3 with

a; = fall, ko)
and
> €1faln,ny) = a’ for alli e {1,2,3},x ¢ R —{0};
j’k

{{z} and it is generated by

(3.14)

(3") A, is isomorphic to o (1}’ it is generated by
{a }141\3 with

al = %Z’Z €infal0,my)
]l
folt; ho) = aay foralli e {1,2,3,xe R~ {0}

(3.15)
and

(3) A, is isomorphic to pil! iy 100, and it is gene-

rated by {a/}; <;¢3 with @] = xg (A € R, # 0), where
al and g/ are given by (3. 14), resp (3. 15)

In the cases (1) and (2)

H2(G,80(3),A) = {\f,y1a € R}

(w}1th the ?O(irrespondmg A, and f,), by Schur's lemma.
{2
, resp. ©, are the diagrams of any essential exten-

sion of Gby such an A . Letting now A, be as in
(3"), we define fg,f” € Z2(g, 86(3) A ) such that

folty, ho) = 6,325 €5, F5 0 ,m,) = a, and vanishing
for all other ba51s elements of gx 9 Then

H2(G,80(3),A) ={x'f5 + 2"f5 1A', A" € R}.

The diagrams of the essential extensions of G by 4,
{1y (1)~ {13
are in this case®),), and(@©), which, respectively, rep-
resent the possibilities (3’), (3”) and (3”). On the other
hand, it must bé noted that, for diagrams of nonprimi-
{1}iv {1}v
tive extensions, the vertices(©) and®), with bases

{EJ kegku( s )} <ic 3, TESD. {zzy.kfukfz( s thcicas

are not, in general ruled out.

Bargmann's superselection rule of the nonrelativis-
tic massl13 is a well-known consequence of the exis-
tence of central essential extensions of G by a one-
dimensional Lie algebra @. On the other hand, we
know that all central extensions of ® by such an @
are trivial (cf.Sec. 2) and that the transition from a
relativistic to a nonrelativistic theory involves the
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Indnii-Wigner contraction of the Poincaré group in
the Galilean one.14 As this group contraction induces
a Lie algebra contraction of @ in G, it is natural to
ask the following question: How can it be that a trivial
extension of ® by @ goes in an essential extension of
G if we contract @ in G ? Saletanl5 has solved this
problem in the general case of central extensions of
an arbitrary Lie algebra ® by @ showing that if ®' is
a contraction of B, f, € B2(®,A,) may go in a

(2;®, A0 cocyclef(O) which i3 not a coboundary.

In the case of the Inonu ~Wigner contraction of @ in G,
this goes as follows. Let X be a real parameter with
0 < A < 1, and consider a one-parameter family of
isomorphisms 7(x):P>» P given, in the basis of Sec. 2,
by

T =1 T = Ay

0 = (/)

T = ¢,
(1,] € {11 2, 3})’

ijo

Then there is a corresponding one-parameter family
of isomorphic Lie algebras ®® with P® = P and
®W = @, which is defined as follows. Let pV denote
peP when it is considered as an element of @™,
The Lie multiplication [ , ]® of ®M is given by

[p(X),p’()\)](X) = T()\)-l[—r()\)p’ T()\)p'].
If we define a Lie multiplication [, ](0) by
we get the Lie algebra ®0) = G, From the physical

point of view there are only two different cases:

(a) 0< x < 1: relativistic theory, where 1/x =c¢
gives the velocity of light in vacuum in different units;

(b) A = 0: nonrelativistic theory with ¢ — o,
Now, take f, € C1(®, A ) such that 61f1 —fz = 0 We
choose ol lem) =0, foll;,00) =0, Lt

0, foll;ot, 5¢0f0rallz] kmc{l 2,3 2} Let
A(’j be the trivial ®™-module with underlymg vector
space A,and let f{V e CLHEW AP), fF e C2(0W),
A ve given by

FOED) = 1/a2)f,(p) (0<as<1),
DO, p' M) = 6,(fPo70)2)) (M) p, TN p")
(0<axs<1),

0) _ W
fp'=Umf;
Obviously, Y € Z2(PM™,A{) for all A = 0, and Sale-
tanl5 proved that this is also true if A = 0, We get
then

1~ 0 for all y, v,p, 0 € {0,1,2,3},

py 2 tpo
f“”(lfj’), £ =0, O, =0

and

FOUP, 4©) = — g f1(t) forall 4,4,k €{1,2,3}

Furthermore, f(O) ¢ B2(G, A(o)) because
6,20, £ = 0 for an 2P e c1(5,4 .
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The five one~vertex diagrams of the essential primi-
tive extensions of § considered above do not fill the
set of diagrams of extensions belonging to ¢,(g).
However, they are all the connected ones (those which
picture connected graphs). Obviously, the disconnec-
ted diagrams of extensions belonging to ¢,(§) are
obtained by combination of the connected ones, and
Ech}elr maximal number of vert1ces 1s four, smce

(© may never be combined with @ or (and) © .

All extensions belonging to ¢ 2(9) have Abelian kernel,
notwithstanding the fact that &, is not Abelian, In
fact, the fundamental $0(3)-module A(¢,f,) of an w-
sliced extension of § by an arbitrary Lie algebra G
satisfies

[Ale,f2), Ale,f5)] € 02(R,)A(0,f,)

because of (3.1). Following the proof of Theorem 3
of I, we get

[(pi((RZ)A((P,fz), (P]((RZ)A((P,fz)] g (Pi+j+2(m2)A((p’f2)-

Hence, in order that (§,p) € ¢,(§), @ must be Abe-
lian on account of Theorem 5 of I. Diagrams of irre-
ducible extensions can be drawn as in the case of
extensions of &(3) and @, but we have now to use
three kinds of arrows, —, -->, and >, picturing,
respectively, the action of @(7'(3)), ©(3U(3)), and ¢ (30).

For example,

{o}

{1} {1}

©. 9
{1 {0} " {o}
@-----+0, *, ki

{op .~ {o} .~

o o

are diagrams of extensions belonging to ¢,(G). They
are supposed to satisfy the relations (3, 2’)-(3.8").
However, there is no extension of § with diagram

(3.16)

since (3.6") is never satisfied by (3.16). This shows
how much care is needed when one draws diagrams
of extensions of §, in order to satisfy (3.2")~(3.8").

A non-Abelian extension belonging to ¢4(§) can be
constructed from the diagram

{uir {1} {1}

in full analogy with the procedure shown in Sec.1 for
the extensions of §(3) with diagram (1.6).

Now consider an extension (§,p) of § by @ with dia-
gram

{1 {1}

(3.17)
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Taking again an w-sliced extension related to (8, p)
with fundamental SO (3)-module A(g,f,), we see from
(3.17) that

A,=Alp,f)@Al,,
where A(<P,f2) and A/, are 1somorph1c to ch{)l)
Alp,f,) is generated by { a <i<3 w1tha = folt;, hy),
and {‘5 Hcjea With g/ = (P(h Sf )isa basis of
A!,. Moreover, DAl 59 o TN, fo) =
wt(T(3))A', = (,0(31(3))-4', = OE As ¢(hg) = 0, we con-
clude that, for any 7 € {1, 2, 3

ohgla) =xa; (A €R, x = 0)

by Schur's lemma.

Hence the radical of § is not nilpotent, and (§, p)
belongs to ¢ (G). Unlike ¢_(8(3)) and ¢_(®), ¢(9)
is not empty. Actually @ is an Abelian Lie algebra,
because of Theorems 3 and 5 of I and since the Lie
multiplication is a bilinear alternating map.

4. EXTENSIONS BY §(3),®, AND §

Let @ mean §(3), ®,or . Suppose ® is an arbitrary
Lie algebra, and let ¢ € hom(®, A(®@)). If ¥ is the
central character determined by & ,we getH2(®, C(Q),)
= {0} since €(@) = {0}. Hence, on account of the bijec-
tion (1.5) of I, there is only one equivalence class of
extensions of (B by G with character &, or ext(®, @, &)
= @. In the Appendix we will show that (D(®@),1g) is
an inessential extension of A(@) by I{(@). Therefore,
for arbitrary ® and arbitrary & € hom(®, A(Q)),
Obs(®, 3, ®) = 0, there is one and only one equiva-
lence class of extensions of & by @ with character @,
and all these extensions are inessential (cf. Sec. 2 of
Ref. 8).
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APPENDIX: THE LIE ALGEBRAS D(§(3)), D(®),
AND D(Q)

A Lie algebra @ being given, define D, € I(3@) (2 € @)
by

D,a' =[a,a’] foralla’ €@.

If @ = {0} and {g;} is a basis of @, then {D, } is a basis
of 1(@) because

[Dalv Daz] = D[al.az]

Letting @ be §(3), ®, or § and considering the bases

for alla,,a, € Q. (A1)

given in Sec.1, resp. 2 and 3, we look for a basis of
D(@) which embeds {D, }

1. D(8(3))
If £, € Z1(6(3), 80(3), E(3),4) is given by f,(r;) = 0,
fl(l) =1t for all i,j € {1, 2, 3}, we get

HL(E(3), E@3)y) = Af, 12 € R}, (A2)

Hence A{&(3)) is a one-dimensional Lie algebra.

According to (A2), we can define a derivation D of §(3)
by Dr; = 0, Dt; = 4, getting a basis {D,, Dy, »Dhiciges

of D(8(3 ). T{1e basis elements have Lle products
given by (A1) and by

[DVJD]:Ov [DtJD]:_Dt‘

J
(D(8(3)), I 5(3)) is an inessential extension of A(&(3))
by (& @3).

2. D)

After the appropriate change in notation, 1n partlcular
the substitution of the bases {r;} ;<3 and {haei<s
respectively, by {l“,, o<y, u<? and]{t 0< <3, all results

obtained in the case of D(&(3)) are vahd for D(®)

t00.12,16,17
3. D(§)

Let f1,/}
fl("i) =0,
fi('ri) = 07

€ Z1G, 80(3),G,4) be such that

fim) =mn,  f1() =0, filhg) =—hy,
fi) =0, fi)=1t, fiy)=

for alli,j, kb € {1, 2,3}
Then

HUG,Gy) ={af; + 2 fiIx, ) € R} (A3)

On account of (A3) we can define D, D’ € D(G) by

Dr; =0, Dn; =m, Dt,=0,
D"}’i =0,

D'n;=0, D't,=t,

Dhy=—hy,
D'hy = hy,

{ D,, Dho,D,D'}l\( i j.ks3 18 2 basis of D(G) with
the L1e products given by (A1) and by

[D D] = O [Dnj’D] = ‘Dnj’ [Dtk’D] = 0)

[ D] = "o ’ [Dri’D,] =0, [Dnj’D'] =0,
(D, ] =Dy, [Dy,D']=—D,

(D ] =
A(Q) is a two-dimensional Abelian Lie algebra, and
(D(9), Tg) is an inessential extension of A(G) by 1(G).
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An algorithm is presented whereby an N-dimensional orthogonal matrix canbe represented in terms of SN(N-—1)
independent parameters 67 (v = 2,3,... Nk = 1,2,..., (v — 1)]. The parameters have the character of angles,
whose compact domains are defined in a manner such that there exists a one-to-one correspondence between
the points in the parameter space and the group of orthogonal matrices. Explicit formulas are given which ex-
press all matrix elements in terms of the angles, and formulas are given which express the angles in terms of
the matrix elements. Special choices of angles give block-diagonal matrices. For three-dimensional matrices,

the parametrization is equivalent to that of Euler.

1. INTRODUCTION

Orthogonal transformations occur frequently in theo-
retical physics and theoretical chemistry. An ortho-
gonal matrix has N2 different elements which satisfy
N(N + 1)/2 constraints, viz.the orthonormality condi-
tions. Thus, the number of independent variables is
only N(N — 1)/2, and sometimes it is desirable to
have a convenient representation of the elements in
terms of a set of independent parameters. In a pre-
vious communication on this subject,! a parametric
representation was given, which could be considered
as a generalization of the Eulerian angles known for
the three-dimensional case.

Three questions had been left unanswered in that in-
vestigation: (1) The geometrical significance of the
angular variables introduced; (2) the boundaries of the
domains of these variables in the parameter-space;
and (3) the algebraic inversion formulas of the angu -
lar variables in terms of the elements of the ortho-
gonal matrix. The second of these is essential when-
ever an integration over the parameter space is re-
quired, as might be the case when the orthogonal mat-
rices are considered as forming a Lie group. The
third is essential in many practical situations, when
initial values are given or interpolation is desired.

The treatment of the problem, developed in the
present investigation, contains the answers to these
outstanding questions. Thereby, the problem of the
parametrization of a general orthogonal matrix is
completely solved.

2. INDEPENDENT ANGULAR PARAMETERS FOR
AN N-DIMENSIONAL ORTHOGONAL BASIS-
TRANSFORMATION

A. Parametrization of a Unit Vector

Consider an arbitrary unit vector in an N-dimensional
vector space spanned by the orthonormal basis vec-
tors ey, e,, ..., ey. Such a unit vector can be expres-
sed by the following parametric representation:

a = e, sing, + cosf,(e, sind, + cosb,{e, sind,

+ cos8,[. - - cosby_p(eyy Sinfy, + ey cosy ) M
(1)

in terms of (N — 1) arbitrary angles. This decomposi-
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tion can be obtained by the following sequence of pro-
gressive projections:

i, = a,

fk = skek + ckfk+1’ k= 19 2’ . "(N_ 1)? (2)

v = ey,
where, for all &,

(L) =1, (f,,le,) =0 (3)
and

8, = sind,, ¢, = cosé, 4)
with

8, = angle between f, and f, {

(z 1) — (angle between f, and e,). (5)

il

In particular, therefore,

Oy =37, Sy=1 cy=0. (6)
It is apparent that siné, can be positive or negative.
But by definition, f,, , is taken in the direction of the
projection of f, onto the space spanned by e,,,, €,,,,
...,ey. Hence, cosf, can be restricted to being posi-
tive. The only exception is §,., because fy = ey is
fixed, and so cosf,._; can be positive as well as nega-
tive. Consequently, if the domains of the angles are
chosen as follows,

—tr=<g, <47

. fork=1,2,...,(N_2),2
<

’ ' (7)
\

J

— 1= 6y 4

1
by =27,

=3

then all possible directions of a are uniguely related
to the angles 6,+++0,,.

From Eq. (2) follows that the projections f ; can be
expressed as

f;= k?}.(cjcjd' "t Cp1Ch) ‘5;) €p- (8)
B. Orthogonal Transformation to a Basis Containing

One Arbitrary Unit Vector

With the help of this representation of a, it is possible
to construct an orthogonal basis which contains a as
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1. INTRODUCTION
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retical physics and theoretical chemistry. An ortho-
gonal matrix has N2 different elements which satisfy
N(N + 1)/2 constraints, viz.the orthonormality condi-
tions. Thus, the number of independent variables is
only N(N — 1)/2, and sometimes it is desirable to
have a convenient representation of the elements in
terms of a set of independent parameters. In a pre-
vious communication on this subject,! a parametric
representation was given, which could be considered
as a generalization of the Eulerian angles known for
the three-dimensional case.

Three questions had been left unanswered in that in-
vestigation: (1) The geometrical significance of the
angular variables introduced; (2) the boundaries of the
domains of these variables in the parameter-space;
and (3) the algebraic inversion formulas of the angu -
lar variables in terms of the elements of the ortho-
gonal matrix. The second of these is essential when-
ever an integration over the parameter space is re-
quired, as might be the case when the orthogonal mat-
rices are considered as forming a Lie group. The
third is essential in many practical situations, when
initial values are given or interpolation is desired.

The treatment of the problem, developed in the
present investigation, contains the answers to these
outstanding questions. Thereby, the problem of the
parametrization of a general orthogonal matrix is
completely solved.

2. INDEPENDENT ANGULAR PARAMETERS FOR
AN N-DIMENSIONAL ORTHOGONAL BASIS-
TRANSFORMATION

A. Parametrization of a Unit Vector

Consider an arbitrary unit vector in an N-dimensional
vector space spanned by the orthonormal basis vec-
tors ey, e,, ..., ey. Such a unit vector can be expres-
sed by the following parametric representation:

a = e, sing, + cosf,(e, sind, + cosb,{e, sind,

+ cos8,[. - - cosby_p(eyy Sinfy, + ey cosy ) M
(1)

in terms of (N — 1) arbitrary angles. This decomposi-
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tion can be obtained by the following sequence of pro-
gressive projections:

i, = a,

fk = skek + ckfk+1’ k= 19 2’ . "(N_ 1)? (2)

v = ey,
where, for all &,

(L) =1, (f,,le,) =0 (3)
and

8, = sind,, ¢, = cosé, 4)
with

8, = angle between f, and f, {

(z 1) — (angle between f, and e,). (5)

il

In particular, therefore,

Oy =37, Sy=1 cy=0. (6)
It is apparent that siné, can be positive or negative.
But by definition, f,, , is taken in the direction of the
projection of f, onto the space spanned by e,,,, €,,,,
...,ey. Hence, cosf, can be restricted to being posi-
tive. The only exception is §,., because fy = ey is
fixed, and so cosf,._; can be positive as well as nega-
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chosen as follows,
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J

— 1= 6y 4

1
by =27,

=3

then all possible directions of a are uniguely related
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From Eq. (2) follows that the projections f ; can be
expressed as

f;= k?}.(cjcjd' "t Cp1Ch) ‘5;) €p- (8)
B. Orthogonal Transformation to a Basis Containing

One Arbitrary Unit Vector

With the help of this representation of a, it is possible
to construct an orthogonal basis which contains a as
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one of its basis vectors. It is the new orthonormal
basis set by, b,, ..., by, whose vectors b, are defined

by

b, = (c,¢p rrc,) 188, »=1,2...,(¥—1), (9)

bN = a, (10)

where 9, denotes 3/96,. Before provingthis conten-
tion, we note that, according to Eq. (2),

0,a = (cy¢,...€,1)9, (5,8, +cf,,,),
whence

b =ce

v vy

— 8., v=12...,(N—1. (11)

As for the proof, we observe that, for u < v,
aﬂ ava = [ap (0102' e cu—l)][au(sueu + ellflnl)]
= (- s,/c,)0,a. (12)
Now since a is normalized, one has
@+3,2) = 33,@2) = 0, (13)

which shows that (by*b,) = 0 for v # N. By virtue of
Eqs. (12) and (13), one obtains also

(a-al1 9,a) = (— su/cp)(a-aua) =0,
whence

(@a) - Q@) =9, [@9,a)]—(a

1

*2,9,2) = 0 (14)

showing that (b,*b,) = Ofor p # », p # N, v= N,
which demonstrates the contention.

From Egs. (10) and (11) the transformation to the new
basis can be written

N
b, = 27 €;4;. (15)
k=1
The matrix A has the form

v
A=

I

and, in the four indicated regions, the elements are

RegionI: A, =¢,i=12,...,(N—1), (16)
Region II: A,y = (cy¢y° - )(S;/c), i=12,...,N,
(17)
Region Il: 4;, = — (C,Ch1" * * G C)(S; S, /CCp), 12>k,
(18)
RegionIV: 4, =0, i<FEk<N. (19)

According to Egs. (10), (11) and Eq. (1), the particular

parameter choice 8, = 6, = -+ =6, , = Oyields
b, =¢, forv=12...,(N—1)
by=a=1§f=f,="- =1y = ey,

whence
A,-k(all 9k = 0) = 6ik' (20)

Since all transformations considered here can be ob-
tained by continuously varying the 6, from zero to
their respective finite values, it follows that det(A) = 1
(and not — 1), i.e.,A always represents a proper rota-
tion.

C. Transformation to a Basis Containing N Arbitrary
Orthogonal Unit Vectors

In order to construct the transformation from the
original basis e e, - ey to an arbitrary new ortho-
normal basis a,a,, ...,a, we proceed as follows.

Consider first the vector ay; identify it with the vec-
tor a of the previous section; and form a new basis
b, b¢", ..., b b{") = ay, with the help of a trans-
formation AW of the form defined in Egs. (15)=(19).
Denote the angular variables by 6%,

Next consider the vector a, ;. It lies in the space
spanned by b, b, ..., b{¥),, and the method of the
previous sections can now be used to construct a new
basis b1, VD, ... bFD bV = ay , bV =a
by an (N — 1) dimensional transformation A,_, from
b - -bM) to bV - - - b according to Egs. (15)-
(19) with new angular variables 6V-1),

In an analogous fashion, we treat successively the vec-~
torsay ,,ay 4, ...,a4, ay. The general step ir_n this
sequence of transformations leads from a basis

w+1) | (wil) (v+1) , (1)
bl 7b2 s "'9by !b(y+1) = a1,

b‘(}/++21) = a’u+2? cey bS\]l”l): ay,
to the basis
b, by, .. b b =a, b =a,,,,..., b =ay
by means of a transformation
bf = 27 b{"VBY, (21)
2

where B is the matrix

W _ AW 0
2 = () )

Here IW-9) ig the (N — v)-dimensional unit matrix,
and A1) is a v-dimensional matrix of the general
form discussed in Eqgs. (15)~(19), with the angular
variables

6, s\ = Sin9§”), ci(U) = COSOi(”),

i=1,2,...,(v—1). (23)
Note that the 6{*) have the domains

—z1= 0 =371 fori=1,2,...,(v—2),
— 7 =6 <, (24)
9,()") =37,
The composition of the consecutive transformations
eventually yields the basis a;a, **-ay in terms of the

basis e;e, - - - ey by means of the resulting trans-
formation

N
a, =2e,T, n=1...,N, (25)
i1
where T is the matrix product
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T = BMBW-1...BBIR(2), (26)
Since T is orthogonal, the inverse of Eq. (25) is
=2 Ty, @7

Furthermore, it is readily seen from Eqs (21), (25),

and (26) that the intermediate bases bk can be ex-
pressed as
b = 2T Va, (28)
n
with the definitions
T = BWBU-DBW-2) ... BAB(2), (29)

3. CONSTRUCTION OF THE TRANSFORMATION
MATRIX FROM THE. ANGULAR PARAMETERS

From Eq. (29) follows that T can be constructed by
the sequence of recurrence steps

TW =7, (30)
T = BT ¢, (31)
T =TW, (32)

Now the recurrence step of Eq. (31) is equivalent to
the basis transformation from the b’ to the b{*?. In-
deed, the inverse of Eq. (21) is given by
by = 20 By (33)
1
and, by virtue of the representations given in Eq. (28),
this is equivalent to

= EBI?ZJ) Tl(nu_l))
!
which is identical with Eq. (31).

In order to obtain simple formulas for Eq. (33), we
observe that the original transformation of Eq. (21)
can be expressed with the help of Egs. (2), (10), (11),
which yield

W) (34)

b = @D — s{fleD (35)

flsuﬂ) = sév)bguirl) + c}su)f’s:lfl), (36)
fork=1,2,...,(v—1),and

b{ = £{*V) = ay (37)

fﬁu+1) = b{1), (38)

) =b(V=a, j=(v+1),(¥+2),...,N.
(39)

This set of equations can be inverted to give

BEHD = B + W 10D, (40)

100D = OB + 1, 41)
fork=12,...,(v— 1),and

oD =D = a,, (42)

B D = D), (43)

B =p? =a;, j=(v+1),...,N. (44)
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Since the set of Eqs. (40)—(44) is equivalent to the
recurrence relation (33), it follows that the desired
recurrence relation (31), (34) can now be expressed
in the form

T = AT + s FW), (45)

F{Y = — spIT0 + ¢ FD, (46)
fork=12,...,(v—1),and

Fp=T4V =5, (47)

T = FR, (48)

T =6, j=@+1),(r+2),....N.  (49)

Here the quantities Fk(,,") are defined by the expansions

D = EFk(nU)an‘ (50)
Equations (45)-(49) represent a self-contained re-

currence procedure, which starts with
TW = 5,,. (51)

Given the matnx T(-1 Egs. (46) and (47) yield all
quantltles 14; (») and, with these, the elements of the
matrix T are obtamed from Eqgs. (45), (48), and (49).

Thus, for a set of N(N — 1)/2 angles §”[v=2,...,N;
k= 1 .+, (v — 1)] in the domain stipulated by Eq (24),
an orthogonal matrix T with determinant + 1 is ob-
tained by applying the recursive scheme (45)-(51). If,
instead of Eq. (51), one uses

(1) _
=1L (52)
TP = 6,, for all other elements

as a starting point, then an orthogonal matrix with
determinant — 1 is obtained.

4, DETERMINATION OF THE ANGULAR PARA-
METERS FROM THE TRANSFORMATION
MATRIX

From the definition (22) of B() and the basic recur-
rence relation (31), it is apparent that the matrices
T (») have the structure

T(”) _ %(u) 0
- 0 1w-n)’

so that the recurrence step of Eq. (31) reduces to

T — A(,,)(T(u—l)0>’
0 1

(53)

that is,

Tk(u”) = A(ku,,)y k= 1) 2’ .
By virtue of the form of A(”) given in Egs. (16)—(19),
this becomes

Tk(:) = Cgu)cgu) .o cg%s’su),

k=1,2,...,v. (54)

These identities furnish the following recurrence
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scheme for determining the angles 4{*) from the mat-
rix elements T%"): Find 6{ 0P ... 94, from

Sinﬂ(l”) = T{I_‘,’),

sin6{» = Tk(,j’)/(coseg'f)cos%“) -++cosb®),  (55)

and the conditions — 37 = 6 < ;7. Finally, find
64} from
sing = T2 ,/(cost{coso§? - - - cosofs),
cosf¥) = T /(cosb{?cos$P - - - cossfs), (56)
and the condition — 7 =< 6 < 7. If any one of the
angles 6§ should turn out to be equal *(7/2) (so that

cosg{) = 0), then all subsequent angles 4§ - - - 64
are arbitrary and can be set equal to zero.

Instead of Eqs. (55), (56), the following alternative re-
currence scheme can be employed. First (%, is
determined from

v ?

tan6 ), = T /T
Slgn (s1n9,,(i‘%) = Slgn(Tu(E%_,u)’ (57)
sign (cos8f¥)) = sign(T{),
— 7= GU(E% < 7,
Then 6{%, 684, ..., 6 are found from
tanf ) = T /(T , /sin6$?)),
sign (sinf{”) = sign(T,W), (58)
—7/2 =6 = 4+ /2,

This recurrence procedure is numerically preferable
when a two-argument arctangent is available which
automatically finds an angle « such that
tana = N/D,
sign (sina) = sign(N),

—71=o<m,
sign (cosa) = sign(D).

If, for a certain value %, one finds 6§*) such that

T8, /s)) = 1, then all subsequent 7,% ,, T8 ,,

.++, T{¥ will vanish and one has to put 659 = 6{% =
ce 9(1u) R

Consequently, all ;N(N — 1) angles 6§, v=2,3,
...,N, k=1,2 ...,(v— 1), representing a given
orthogonal matrix T can be found, if all intermediate
matrices T(2, T ... T®@ are known. Now T¥ is
identical with T, and thus known. The remaining T (),
for v = (N —1), N — 2),...,2, can therefore be cal-
culated, if a recurrence step leading from T to
T(-D ig available. Such a recurrence relation is
obtained by inserting the representations of Eq.(28)
and (50) into the set of Eqs. (35)-(38), which yields

TG = TP — SWEY,,, (59)
Fk(nU) = s}(2U) Tk(nU) + CISU)Flgf%,n 4 (60)

fork=12,... (v~ 1),and

TS = F{9 = 3,,, (61)
F» = 1W, (62)
TV =5, j=@w+1,(v+2),...,N. (63

Given the matrix T and the angles 6{), Eqs. (60)
and (62) yield all quantities F,{) and, with these, the
elements of T¢*~D are obtained from Eqgs. (59), (61),
and (63).

Equations (55)—(63) provide thus the means to obtain
a parametric representation in terms of N (N-1)
angles for an arbitrary orthogonal matrix T.

5. DISCUSSION
A. Relation to Previous Formulation

The construction procedure of Egs. (45)-(52) is identi-
cal to that given by Raffenetti and Ruedenberg,! ex-
cept for some changes in notation. In the previous
paper the quantities v,,, T, t(, s{n were used. The
relation to the symbols used here is as follows.

Ref.1 this work
Y kn 915”)
T T ()
sp - Ky
T (n-1)
t(n <T * 0>
0 1

In Ref. 1,there was also givena recurrence procedure
for calculating the derivativesof T with respect to the
angular parameters.

B. Block Diagonal Form

It was furthermore shown in Ref. (1) that the con-
struction by Egs. (45)~(52) is equivalent to express-
ing T as the product,

T = an—l,n : a’n—z,n ca R e a‘z.n t a4

n-3,n n

XAy 0n1" 8y 3,1 35 g,1 ° ' ° B2p1°87 4,

X a

n—3,n—2'an—4,n—2 ot a2,n—2'a'1,n—2

Xayg

where each a,_ is the “2 X 2-type” orthogonal mat-
rix, which is f&entical with the unit matrix except for
the diagonal elements in the pth and gth column which
are cosd{@, the element on the intersection of the pth
row and {he qth column which is sinegl), and the ele-
ment on the intersection of the gth row and the pth
column which is — sin@}fl).

Since each of these factor matrices has the nonzero
off-diagonal elements in a different position, the
present formulation is very convenient for the con-
struction of a matrix which is block-diagonal or even
equivalent to being block-diagonal (i.e., which can be
made block-diagonal by appropriate permutations be-
tween the rows and between the columns). Such a
matrix is obtained by simply choosing 6{ = 0 for all
index pairs pq for which the block-diagonal form re-
quires 7,, = 0.

C. Accuracy
Computer programs were written for both processes:
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the construction of T from N(N — 1)/2 angles 6%’ and
the determination of N(N — 1)/2 angles 6% from a
given orthogonal matrix T. Test cases were run
where, first, T was evaluated from arbitrarily chosen
angles and, then, the angles were recalculated by the
inverse process. It was observed, somewhat sur-
prisingly, that no significant figures were lost in
carrying out the two processes in succession. A
documented copy of the FORTRAN program has been
submitted to the Quantum Chemistry Program Ex-
change at Indiana University.

6. ALTERNATIVE PARAMETRIZATION

There are many different parametrizations which can
be formulated that are similar to the one outlined in
the previous sections. For example, instead of Eq. (2),
one could write

fu =ce, + sutu+1’

where the barred quantities are the counterparts of
the unbarred functions previously defined. However,
in order that the transformation A [corresponding to
A of Eq. (15)] have determinant + 1, it is necessary to
replace the definitions (9), (10) by

1 =2,

(=2 -]

pi1 = (Sl' . §y_1)'1aua.

The matrix A has the structure

Zij =01 ]—122’
Zij —3“ j—i=1,
Zil = §1' “Ei-lgi’

i=j=2

>

= G155
and equals the unit matrix when all angles are zero.

We introduce the succession of basis sets

B =a,, by ..., B
b2 =a,, B2 =a,,..., bi?
Y =a,, BY’ =a,, ..., bV =ay,

which are related by the transformations
E(kwl) —

Z} 'ﬁi(v)]__; i(l};l—u)
where t

Bw - (1 0\,
0| AW

The matrix B is parametrized by the u — 1 angles,

0=9W <7,
0= I(,,‘i)<211

i=(N—p+1)to (V—2),

With this choice of angles the equations equivalent to
(35) and (36) are

B(Z?l - sé}v—wl)i)g/-l) + ElgN—wl)f)gz:)l,
fk(u) :Z‘%N_"”l)i);;’_l) + gkuv—u+1)f’§f{’
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which can be inverted to yield
B = e g _ geDpl)
Tlg})l — 52N—u*1)f§eu) +E£N—M*I)B§Eu+)1_
These equations together with the conditions
fISj) = bSJ‘l),
fu(y) =a,

yield the recurrence steps by which T can be de-
composed or constructed.

The matrices T®W are defined by

TG) = BOBC-D. . BB
and T by
T = TW),

They can be constructed recursively by the relations
Ti&”*” = 5(u+1)F(u) .
F(V) — s(‘“‘l)F(U) + c(y+1)T(

§(u+1)T(v)'k’
+1,ks
with the aid of the initial condition
F(")k - 6N—u ke
Here the matrix F®) is defined by the relations
? FYa, =¥,
The matrices T can be decomposed by the relations

T'("i - s(u+1)T(U+1) + C(u+1)F(ul)k’
Fszl/) = u+1)T$zll+1) + s(U’fl)F(D s

and the condition
A}u) — T(u*l)
The angles of T can be determined from the relations

= 71:1(31)14 N-v+1

cosdW = T . /(sing{) ...

cos3¥, 4

- sing®),
i=N—-v+2toN -1,
sind) = Ty y.,.1/(5in8), ., - - - sindl)).

As was the case with the transformation T, the trans-
formation T can be written as a product of s NN — 1)
“(2 x 2)-type” orthogonal matrices. This is implied
by the existence of the recurrence relations given
above. However, in contrast with the former case
when there was one 2 X 2 matrix with off-diagonal
elements in the position of any given off-diagonal ele-
ment of T, all 2 X 2 matrices occurring kere have the
general structure

(d,m Ay nrt ) <c — s>
= b
dn*l,n drl+1,n*1 s ¢

dy; =96, 4,j*nn+l,

where d;; is an element of the 2 X 2 matrix and ¢ and
s are the cosine and sine, respectively, of the asso-
ciated angle.
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An intrinsic quantization procedure based on higher symmetries of classical dynamical systems and utilizing
the techniques of van Hove and Souriau is proposed. The procedure is intrinsically Hamiltonian but not
explicitly canonical in that the Heisenberg algebra plays no fundamental role. The proposed method is applied
to the n-dimensional harmonic oscillator and to the n-dimensional hydrogen atom. This approach seems to
provide the first intrinsic justification of the success of ordinary correspondential quantization for this last

system.

1. INTRODUCTION

Purpose of the present paper is to illustrate a pro-
posal for a new point of view in quantization theory.
The presentation given here has a rather provisional
character from a mathematical standpoint, leaving
rigorous proofs and technical refinements to a sub-
sequent discussion.

As is well known, the usual correspondential proce-
dure of quantization (Schrédinger method) is a rather
artificial operation which does not reflect, in general,
intrinsic geometric or perhaps dynamical properties
of the physical system to be quantized. As a conse-
quence, it depends strictly on such arbitrary and local
objects as the canonical coordinates used for the
Hamiltonian description: Precisely, the Schrédinger
quantization must be carried out in Cartesian co-
ordinates while the quantization in generalized co-
ordinates is always to be deduced by means of a suit-
able transformation (see, for instance, Refs. 1, 2, 3).
This unsatisfactory situation becomes a serious
drawback as soon as the phase space © cannot be con-
structed in the usual way over a configuration space
M (cotangent bundle Q@ = T*M); in fact, in this case,
the procedure completely fails.

Another unappealing feature of this method is that it
does not give a general prescription to obtain self-
adjoint operators from a suitable class of classical
dynamical variables. As a consequence, the mathe-
matical structure of the operators constructed by the
correspondential procedure must be analyzed case
by case.

A final point about the Schrddinger correspondential
quantization is the lack of uniqueness.4;5 This is
usually taken as a further shortcoming; however, the
fact that different quantum observables (and thus
different processes of measure) may “correspond”
to the same classical variable appears to be inherent
to the epistemological status of quantum mechanics
and, in our opinion, should not be considered a weak-
ness of the theory.

The need for a more clear foundation of quantization
has given rise to many interesting investigations.
These works can be divided into two classes. The
first one is concerned with algebraic rules for assign-
ing operators to classical variables is some co-
ordinate-invariant way4—9; the subsequent discussion
should make clear that this approach is inadequate.
The second class is concerned with a quantization
based on the intrinsic geometrical structure of the

canonical transformations and follows a group-
theoretical rather than a simply algebraic
approach.10—16 The present paper belongs to this
last class of works.

Our approach originates from the belief that if some
typical attributes are to be maintained in the abstract
process of quantization from classical dynamics, these
should be global symmetry properties which embody
configurational and dynamical features. Thus we
propose an intrinsic quantization scheme for the
Hamiltonian systems which admit a global maximal
symmetry group satisfying certain reasonable con-
ditions. It is clear that the consequent range of
application of the theory is very narrow.l? However,
it contains in particular the dynamical systems which
provide the basic models for all the nonrelativistic
particle interactions, namely the oscillator and the
Coulomb problems. In this connection we claim that
our approach “explains” the up to now rather myster-
ious quantization of the hydrogen atom.13.14 In a
sense we can say that our quantization is system-
dependent. At the same time we are convinced that

a general intrinsic quantization procedure is a pro-
blem which cannot be settled within the framework of
ordinary quantum mechanics.

Our procedure can be roughly divided into the follow-
ing steps. A first stage corresponds to the identifica-
tion of the global symmetry at the classical level
together with an enlarged “noninvariance” transforma
tion group of the phase space called the “quantization
group”. An essential property of this last group is
that it always contains the Hamiltonian of the given
dynamical system expressed as a function of a single
infinitesimal generator. The second stage is the
construction of a “contact” manifold Q,,,, over the
phase space (“espace fibré quantifiant” of Souriau,
see Ref. 12), in which a global action of the quantiza-
tion group is defined. The third step is the consequent
construction of a unitary reducible representation
®RQ/M of the quantization group within a suitable sub-
space of the Hilbert space of Lebesgue square—
integrable functions on {,,,;. The final step is the
reduction of R/ and the selectionof the irreducible
“quanturn representation” ® The second and third
steps realize a process which can be called a pre-
quantization.18

1

The true quantization is accomplished by the fourth
step which defines uniquely the quantum description
in terms of a complete set of observables which
include the Hamiltonian. In this sense, the procedure
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should make clear that this approach is inadequate.
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approach.10—16 The present paper belongs to this
last class of works.

Our approach originates from the belief that if some
typical attributes are to be maintained in the abstract
process of quantization from classical dynamics, these
should be global symmetry properties which embody
configurational and dynamical features. Thus we
propose an intrinsic quantization scheme for the
Hamiltonian systems which admit a global maximal
symmetry group satisfying certain reasonable con-
ditions. It is clear that the consequent range of
application of the theory is very narrow.l? However,
it contains in particular the dynamical systems which
provide the basic models for all the nonrelativistic
particle interactions, namely the oscillator and the
Coulomb problems. In this connection we claim that
our approach “explains” the up to now rather myster-
ious quantization of the hydrogen atom.13.14 In a
sense we can say that our quantization is system-
dependent. At the same time we are convinced that

a general intrinsic quantization procedure is a pro-
blem which cannot be settled within the framework of
ordinary quantum mechanics.

Our procedure can be roughly divided into the follow-
ing steps. A first stage corresponds to the identifica-
tion of the global symmetry at the classical level
together with an enlarged “noninvariance” transforma
tion group of the phase space called the “quantization
group”. An essential property of this last group is
that it always contains the Hamiltonian of the given
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step which defines uniquely the quantum description
in terms of a complete set of observables which
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provides an intrinsic Hamiltonian quantization. The
usual canonical description is possibly recovered at
the end, in the sense that canonical operators @, P,
irreducibly represented, may be definable within the
quantal representation in such a way that the Hamil-
tonian, as a function of them, takes the usual corres-
pondential expression.

The mathematical technique we use is due to the in-
vestigations of van Hovel® and especially of
Souriau,12 with some adaptations and developments
indicated by the works of Auslander and Kostant18,19
and Hurt.16

The essential points of van Hove's and Souriau's
results are briefly reviewed and discussed in Secs. 2A
and 2C. In Section 2B the problem of quantization is
discussed in its generality starting from the standard
historical formulation (Dirac problem). Section 3 is
devoted to the statement of the proposed dynamical
quantization. Finally, in Sec. 4, the theory is applied
to two basic classes of dynamical systems with
higher symmetries: the n-dimensional isotropic
harmonic oscillator and the n-dimensional hydrogen
atom.

We adopt the notations of Ref. 20.

2. GENERAL PROBLEMS OF INTRINSIC QUANTI-
ZATION

A. Euclidean “Prequantization”

Van Hove's investigationl® is concerned with a Eucli-
dean phase space 5, = R2”. Consider the infinite
Lie pseudogroup I' of “contact” transformations, con-
sisting of those C (™ global diffeomorphisms of

R2n*1(s,q4, ..., G, P1, ..., B, Onto itself which leave
the 1-form
0 =—ds+ Epidqi (1
i
invariant, The general form of an element v ¢ I' is
( qi": qi,(qi P); i=1,...,n,
yi < pl= pil(q’ p), (2)
( s'’=s + ny(q,p),
where n
dn.(q, P = Z) (P,-'dqi' - Pidq‘-) (3)
I 1

and m/(q,p) is the “generating function”2! of the
transformation (g,p) — (g, p’), which is a canonical
transformation since

13
W —w= ? (dp; A dg; — dp, A dg;)

n
= d(?[l)idqrpidqi]) =0. ()
A one-parameter subgroup y(7T) C I' is characterized
by its “infinitesimal generating function” flgq, p):

ds(1) _ X of
aTr —f(q,P)—?p,ﬁ;y

ag(m) _af(q,p) 9D _ fa,p)

dr op, dr aq;

(5)

Not every C ©) function f(g, p) generates one-para-
meter subgroups of I, i.e., not every C (= vector
field of the form
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XD‘]=<f~$a%>% +{f -} (6)

is “complete.”22 Let us calld . C & (R 27)the family of
C 9 functions f(g, p) such that X[f] is “complete.”

Van Hove first defines the following unitary repre-
sentation ® of I" within the Hilbert space of the
Lebesgue square-integrable functions over R2»*1;

®R:Vye T, ¢ € Ly(R21): [U,9](g,p,s)
= (P('V—l(q’ p) S))_ (7)

This is a completely reducible representation of I
which can be reduced into a direct integral over the
generalized subspaces of functions ¢{g, p, s) satisfy-
ing the condition

dlg, p, s + s7) = ei=s's(q, b, s),a any real number. (8)

From Egq. (8) it follows
#(g,p,s) = eiosy(q,p). (9)
Therefore, the representations ®(=) defined by
R VyeTI, ¢ € LyR2")
[U,¥)(g,p) = €07 @Dy g, p)), (10)

result faithful (unless a = 0) irreducible unitary
representations of I'.

Each multiplier representation ®{«) associates a
self-adjoint operator H(=)[f] in L,(R?2") to every
Ag, p) €3 & In fact, since flg, p) generates a one-
parameter subgroup 'yf(T) cr, (R(a)(yf(‘r)) is a con-
tinuous one-parameter group of unitary transforma-
tions
() _ : _yr(a) .

Uy = expli H [ f]); (11)
then, by the Stone~von Neumann theorem, H(¢)[f] is
self-adjoint. The explicit representation of H (<[],
according to Eq. (5), is

H(N)= ol s =3 p 2 )+ ilh--o). (12)
1 %
As shown by van Hove, the operators
K[f1= 1/aH@(f], for a =#1, (13)

solve the restricted Dirac problem, i.e., establish a
map from classical dynamical variables f to self-
adjoint operators K[ f] with suitable domains in a
Hilbert space, such that

jK[fl]K[fz] — K[f)K[f;] = iBK[{ f1,/5}],
1(1] = 1.2

B. The Dirac Problem

The full Dirac problem, which can be considered as
the standard historical formulation of the quantum
conditions, 24 requires, in addition to Egs. (13)-(14),
the fundamental operators K|g], K[p] to be irreducibly
represented, a condition which is necessary in order
to define the quantum kinematics uniquely (see also
Weyl25),

(14)
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It is easy to see that the correspondence given by
Eq. (13) does not provide a solution of the full Dirac
problem. Actually the operators

_ L 0 _ - 0
Klgl=Q =q + méj—)i’ Klp)= P =— mﬁfi (15)
commute with

r— d L 3 _a_
Q= ZEEE, P/ =p + zhaqi. (16)

1t is possible, of course, to restrict to a “subspace”
corresponding to

Qi a, p) = ¥(g, p) > wig, p) = e “PNlix(e), A1)
Then the restrictions of @, P
Q,x (@) = (g +1)x(q)
\x : (18)
[Exta) = =i 52 X(@)

are irreducible and still self-adjoint. However, such
a subspace is not invariant in general under the
unitary transformation group generated by the
Hamiltonian. Therefore, in this way, we would have
an intrinsic quantization of the kinematics alone, i.e.,
nothing more than the usual scheme.

This latter, on the other hand, besides its being an
artificial and nonintrinsic procedure, does not re-
present a solution of the Dirac problem either. As a
matter of fact, it satisfies the irreducibility condi-
tion, but it contains no general prescription to assign
self-adjoint operators to a suitable family of classical
observables. More precisely, an assignment is given,
once and for all, only for the so-called Heisenberg
algebra £ ;. g, p, 1, while all the other dynamical
variables are left to be defined ad hoc as operator
functions of ¢, p, 1; in this way, however, one is not
assured a priovithat such functions define self-
adjoint operators. One can be sure at most to obtain
symmetric operators by following certain “ordering
rules” in the construction,4~6 but the whole proce-
dure may not be consistent with the restricted Dirac
problem as well.

We stress that this failure must be common to all
the purely algebraic approaches such as those given
in Refs.4-9. The point is that the basic feature of
both the classical and quantum systems is not only
a Lie structure of observables but also a mapping
of observables to one-parameter subgroups of
canonical or unitary transformations, respectively.
Thus we cannot expect a function flg, p) € & to
correspond to a self-adjoint operator whatever the
mapping may be, owing to the Stone-von Neumann
theorem.

On the other hand, the Dirac problem as stated in its
historical form is not a well-defined mathematical
statement, so that the question of its general solv-
ability cannot be asked directly. A mathematically
consistent formulation of the problem has been given
by van Hove, who was able to prove a nonexistence
theorem. We do not know whether the extra assump-
tions introduced by him are really necessary from a
general point of view, but we will not discuss this
point here. Van Hove's theorem gives a negative
answer to the question asked by the full Dirac problem
for the whole family & [ of classical observables.
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At the same time van Hove has given a positive
theorem according to which the representation R1/®
provides the unique solution of the full Dirac problem
for the subfamily &, € ¥ of polynomial functions,
quadratic at most in the canonical variables, i.e., the
generating functions of the subgroup I', T of

linear symplectic transformations. In physical terms
this means that a quantization is given for any
harmonic oscillator in the sense that what is quanti-
zed is the Heisenberg algebra plus the Hamiltonian
and some other constants of the motion. In the case
of the family & ; the results turn out to be just the
ordinary correspondential ones; however, the con-
struction given by van Hove contains ad hoc prescrip-
tions in the final stages which weaken somewhat its
intrinsic nature,

According to van Hove's results, it is not possible to
quantize in an intrinsic way sufficiently large systems
of classical observables to be considered as possible
observables of the classical mechanics as a whole,
independently of any specifical dynamical system.

As Hermann!3 remarks, this does not preclude the
possibility of quantizing special classes of dynamical
systems, and it seems to be an open topic of research
to analyse the structure of classical systems for
which this is possible. In this connection Segall4

has stressed the fact that the success of the ordinary
quantization for such a fundamental system as the
hydrogen atom is not yet well understood. In order

to clarify these relevant points, we propose to change
the main point of view on general quantization in a
sense we are going to outline in the remainder of the
present paper.

First of all, let us remark that in the case of the
subfamily ¥, , which provides the only positive example
we know of a true intrinsic quantization, the elements
7 (g, p) close a finite Lie algebra and, what is more,
do generate a global Lie group. In the second place,
let us observe that in all the relevant theorems it
must be always assumed that the Poisson bracket of
two given elements f, f; € § also belongs to &,a
fact which is not assured a priori since & 1 is not
closed neither under linear combination nor under
Poisson bracket. (An example is given by:

1 =1%P2 €8s =803 €8, 1 + 2 €5 1 {10 fa}
= —3pq2 ¢ ¥ ; see Footnote 22,) We recall that the
neighborhood of the identity of an infinite Lie pseudo-
group is not expected to share the structure of a Lie
algebra.26 Now, the important point is that for ele-
ments (g, p) there is an essential link between their
property of closure under Lie bracket and their belong-
ing to & . As a matter of fact it can be proved the
following important result (Palais)27;

Theovem: If the functions f;-- - f, are such that
(a)f;, Eg‘r‘, i= 1"'-,k3

(b) they generate a finite-dimensional Lie algebra
under the Poisson bracket (i.e.,f;; = 1 £, fits fiia

= { Jijs fq}, etc. are linear combinations of a finite
number » = k of functions),

then
(a’) every X[f] is “complete” (f € £),

(b’) there exists a unique global action on R2#*1 of the
simply connected Lie group L whose Lie algebra is £.
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All the above considerations strongly indicate that to
attack the problem of intrinsic quantization, we must
take into account a finite~-dimensional subalgebra of
& (or better a Lie subgroup of I'). On the other
hand, the negative result contained in van Hove's in-
vestigation indicate that we must abandon the Heisen-
berg algebra or, in other words, the canonical way
“striclu sensu” of quantization. What we propose to do
now is to work with a finite Lie subgroup of I" which
is specific for a given dynamical system in that it
reflects its intrinsic dynamical properties. Having
identified this group, which we shall call the “quanti-
zation group” G, and its particular global canonical
realization Xg in the phase space Q,, of the system,
we are led to consider the corresponding unitary
representation of the form ®(L/%), This representa-
tion is now a reducible onel8 (unlike for the full
group I'). Then the irreducibility of the Heisenberg
algebra representation is to be substituted in a
natural way by an irreducibility condition on the above
representation. This will finally provide the “quanti-
zation” of the dynamical system in terms of a unitary
representation ® of § which we shall call the “quantal
representation.” This irreducibility condition means
that all the observables of the quantized dynamical
system are to be found within the enveloping algebra
Ggof §. It must be clear, however, that only the
observables belonging to the Lie algebra® are
intrinsically quantized, ie., are unambiguously deter-
mined by a canonical vector field, while the other ones
do not possess an intrinsic classical counterpart.
Since the quantization procedure does not preserve
the functional relations, the quantization of elements
of the enveloping algebra €& is not a well-defined
intrinsic process and becomies ambiguous in the sense
of the “ordering rules.” We have stressed in the intro-
duction that from our point of view this is not a
drastic shortcoming and can be admitted on general
grounds. In particular, the quantization of the canoni-
cal variables themselves is not defined in general
also in the case of Euclidean phase spaces.

It may happen, however, (and in significant cases
actually does) that the canonical operators are re-
covered at the end within the quantal representation
®. This would “explain” the effectiveness of the
Schrédinger quantization in such cases. For these
reasons, our procedure, which is entitled to be called
a Hamiltonian quantization, is not a “canonical”
quantization.

Ag the reader will realize, there are important ques-
tions in the final stage of our quantization method
which we have not yet fully explored. The most im-
portant one is the choice of the quantal representa-
tion ®. The results we obtain are quite satisfactory,
but we have not yet been able to exploit a deep
geometrical reason to be found at the classical level
of the procedure which forces the selection of &.
Without this geometrical foundation, the whole pro-
cess would finally appear as a construction which
reduces to “explain” a posteriori the effects of quan-
tization and such that it could be plainly bypassed by
dealing with the unitary representations of § since
the beginning. That this is not the right interpreta-
tion of the facts, however, is corroborated by the
existence of a deep structural similarity between the
representation & and the global canonical realiza-
tion JCg

J. Math. Phys., Vol. 13, No. 4, April 1972

E. ONOFRI AND M. PAURI

Another relevant question is the uniqueness of the
procedure, though, in our view, this does not re-
present a crucial point. Anyway, it is a remarkable
fact that, in the simple (and singular) cases in which
different ways of quantization appear to be possible,
they bring all to the same result.

Finally, relevant technical problems may appear from
a practical point of view in connection with the reduc-
tion of the unitary representation R/®, A great

deal of work in this field has been done by Gel'fand
and co-workers.?28 Investigations also more close

to our problems have recently been performed by
Kostant and Auslander.18,1% Implications of all these
results to our program have still to be pursued. On
the other hand, the mathematical problems at the
classical level should be considered completely
clarified. The local theory of canonical realizations
has been given in Refs. 29. Results on the global
aspects of this theory can be found in several recent
works.12,18,30

C. Non-Euclidean Prequantization

According to the proposed point of view, we are led to
“quantize”, in a sense to be still completely specified,
global canonical realizations of Lie groups. Now, the
underlying manifolds of these realizations (phase
spaces in our context) are not in general Euclidean
manifolds. Therefore, we are forced to go beyond van
Hove's approach.

It must be remarked that the need for a generaliza-
tion of the theory to arbitrary differentiable mani-
folds is apparent also independently of our group-
theoretical considerations. For later convenience it
is worthwhile to clear this point by means of a basic
example. Consider the z-dimensional Kepler problem;
the phase space is “naturally” Euclidean:

Q,,= T*(R*—{0}), (19)
but the Hamiltonian vector field (dH)* , where
H = p2/2m — k/ x| (20)

is not “complete” since orbits with zero angular
momentum reach the point x = 0 within a finite lapse
of time. This means that H ¢ & ., i.e., H cannot even
be prequantized; altogether, it has recently been shown
by Moser3! that the phase space can be enlarged in
such a way that the Hamiltonian vector field becomes
complete: this “globalization” (Q3,, X¥) (in the sense
of Palais27) is characterized by a phase space Q3%,
which is no more Euclidean (unless » = 2). Note that
this “globalization” or “regularization” is just the
one implied by the dynamical symmetry SO(n + 1)

of the dynamical system. In this connection we shall
see in the following the actual topological structure
of Q3,.

A general investigation of the intrinsic quantization
problem for non—-Euclidean symplectic manifolds has
been given by Souriau.l2 The essential point in geo-
metric quantization, or better “prequantization,” is
always to start from the phase space §,, and to con-
struct a contact manifold §,,.; of one dimension
higher which carries the prequantization procedure.
In giving a generalization of van Hove technique to
arbitrary symplectic manifolds, Souriau finds that,
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unlike the Euclidean case, suitable conditions must be
verified in order that the phase space 5, be pre-
quantizable. Souriau himself has already applied his
method to quantize elementary systems, such as the
Galilean and Lorentz free particles with spin, which
cannot be dealt with using the ordinary correspond-
ential procedure, However, to the authors' knowledge,
a consistent treatment of dynamical systems with
interaction has never been made.

In what follows we shall limit ourselves to illustrate
in a rather free way the Souriau theory as applied to
a simple significant example, emphasizing the role
which can play a group structure according to our
point of view. For the sake of clarity, we shall follow
step by step the exposition given of van Hove's
approach.

Consider, as phase space ,, the two-dimensional
sphere 52, equipped with the symplectic structure
defined by the global 2-form

w(X,Y) =1-XAY, |l fixed, (21)

where ! is the radius vector and X, Y any two tangent
vectors to S2, Since

fs , @ = 47l (22)
a global 1-form 6 such that
w =dé (23)

does not exist [compare instead Eq. (4)]. However, we
can define two open subsets U,, U_ of S2 such that

U U U =82 (24)

and two 1-forms @* such that their restrictions to
U,, U satisfy

w—dex) ! U, =o0. (25)
A simple choice is

u= 52 — {(07 0’_ l)}’

(26)
U =852 —{(0,0,0)}.
Since
w = Ild(coss) A do = dp A dg, (27
the most general 1-forms restricted to U, are
8} =1l(coss ¥ 1)dp +a, (28)

where da, = 0, Without any loss of generality, we
choose a, = 0.

Then, having constructed the (trivial) local bundies
U x 8, U x81, (29)
the existence of a global bundle over S2 follows from

a general theorem32 under the existence of a mapping
s

s: U N U 22t g1 (30)

{obvious in our case). As Souriau has shown, this
global bundle can be given a contact structure adapted

to the underlying symplectic structure of S2 if the
mapping (30) is such that
0*(x) — 0X(x) =ds(x) for every x ¢ U, n U.. (31)

In the present case, from

— l{coss — 1)de + l{cosd + 1)de = 2ldg, (32)
it must be
s(3y0) = 219, (33)

Setting ﬁslds = 2nf by convention, the mapping s
exists if and only if

21 = NH, (34)

In conclusion, the contact manifold §i; exists, and
then S? is prequantizable, only if the radius 1 is an
integev ov half-integer multiple of ¥ . Since in this
case the contact manifold is not a trivial fibre bundle,
i.e.,a direct product Q, x S%, it is not possible to give
explicitly the global invariant one-form [in analogy
with Eq. (1)] and the global contact transformations y
which leave this 1-form invariant [in analogy with
Eq.(2)]. However, we can give expressions analogous
to Egs. (1), (2), (3) in local charts. The global 1-form
looks like

0, = ~—ds +0r. (35)

Correspondingly, the expression of the generic C ()
vector field [in analogy with Eq. (5)] is now

=fr_ _ﬁ‘_}_@. v

X,[f)=[r—(coss s )L 1.2 4 {f,--0, (30)
Then, just in view of our preceding remarks, we con-
sider a particular finite Lie subgroup of the full
group I of contact transformations of {1; precisely
the group SO(3) which acts transitively on 52 leaving
w invariant, This global canonical realization will
be denoted X3 ; its local structure has been
studied in Ref. %5, the infinitesimal generators are
globally Hamiltonian with generating functions

Jy = I sind cosg = (12 — p2)1/2 coggq,
Jy = I sind sing = (12 — p2)1/2 ging, (37)
dy = lcosd = p,

where (g, p) define a canonical local chart on $2

according to Eq. (27). Then the corresponding vector
fields on Q, are

1S d
Xﬁ:[JI] = l E——g‘ cosq-a—g +{Jl,"-},
{F . d
X,[J,) =1 ﬁ%smqg +{Jgy 01 (38)

2
X [J3]= 155 + {51

Assuming the existence of a global action K, in the
contact manifold ©,, it is possible to define a re-
presentation ® within the Hilbert space L,(Q3)
analogous to Eq. (7). Then, we restrict to the subspace
of funections ¢ such that
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¢,°erz — einr/ﬁd,, (39)
where Z is the fundamental vector field, parallel to
tl}e fibers of 5, which in any local chart is simply
a/os.

Then, in any local chart, Eq. (39) reads

olg, p, s) = eins/E (g, p), (40)

analogous to Eq. (9).

Within the subspace of functions ¥ (gp) defined by
Eq. (40), we obtain representations ® ®/® (analogous
to ®{2), which are now unitary reducible representa-
tions of the rotation group. The skew-adjoint infini-
tesimal operators of SO(3) are obtained from Eq. (38)
by means of the substitution 3/3s — in/%. On the
other hand, the operators corresponding to the
operators K used by van Hove become

K[J,) = @/n)HE/m ()] (41)
and solve the Dirac problem for the angular moment-~
um if = 1. In order to reduce the representations
®R@®@/M it is profitable to use the connection with the
theory of “classical” representations.33 In the pre-
sent case it suffices to remark that the operators
H/M together with the multiplication operators

%Ji provide a Hermitian irreducible representation

of the “classical” algebra of the rotation group SO(3),
corresponding to fixed values of the invariants, given
by

DX R ) PR
B s \m} “\2/)° = =5
- n (42)

The “classical” algebra of SO(3) is isomorphic to the
Lie algebra of the three-dimensional Euclidean group
E(3) through the correspondences J; <> B, H; < M,,
being M; and P; the generators of the space rotations
and translations, respectively.

Then the restriction with respect to the subgroup
generated by the H, [i.e., SO(3)] is obtained (see
Pauli34) in the following form
2B gy j=NN 4N
RA/D =j§/2 DO, j= 5y + 1, D) -+ 2,.... (43)

Note that the representation ® @/® contains all the
values of the “angular momentum” higher than the
classical value; also projective representations of
SO(3) can occur,

In the above considerations, we were not guaranteed
that a global action of SO(3) on the contact manifold
actually existed. Thus all the results are formal, up
to now. On the other hand, under certain conditions,
the contact manifold can be directly constructed start-
ing from the transitive realization Xg itself.35 This
is just the case for SO(3) on S2. In fact, SO(3), to-
gether with its Maurer-Cartan invariant 1-form36

6 = lw3, constitutes a contact manifold 5 = [SO(3),6].
The fibers of this bundle are the left cosets of the
subgroup of the rotations around the third axis. The
base space is obviously S2 and the normalized funda-
mental vector field Z is given by the left-invariant
vector field corresponding to M 3/, where M 3 gene-
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rates the rotations around the third axis. Then, a
local coordinate system (Euler angles) exists in the
group manifold in which 8 looks like

0 = l{dy + cossdg), (44)
so that we recover the symplectic 2-form on S2 in-
duced by @

w = ld(cosd) A de. (45)

The global action of SO(3) on itself defined by left
translations leaves the 1-form 6(and the vector field
Z!) invariant so that it is a global contact action.
Then the unitary representation & of SO(3) is nothing
else than the regular representation, and the subspace
condition (39) given above becomes

poexp(TM,/l) = ey 0 <1< 21l (46)
and in particular forn =1
PoRz() = eiM/2¢, wherely =r7. (47)

This is just the condition defining the representation
induced by ¥ — eiN¥/2 in Mackey theory. Then the
reduction is the one given above (see Vilenkin37):

o0, 8,0) = "2 p(g, 5,0)

N o
= ¢'N¥/2 22 al eme By o (cosd)
j=Nrz1 1mi

2 2 =j n m 2

= eiN'P/z

where

__ 1\m-N/, ; m
o = ENTEEA Y 2y dicoss)p (o, 6, 0)

X e~im¢ Pi o (coSS).

(49)
Thus the functions

Uz lapw) = ' MV DI (2p/N) (50)
define an orthonormal basis in the subspace Lg’ de-
fined by Eq. (47).

If we think of the point over S$2 as of a classical
model of spin,2? we can say to have quantized the
system only if we have singled out an irreducible
representation of SO(3) corresponding to a fixed
value j of the spin. In the present example, the most
natural choice for the value j is clearly the lowest
one, the classical value j = N/2. 1t is also clear that
within the irreducible subspaces, canonical operators
@, P do not exist. This is to be expected on general
grounds: Whenever the classical phase space is com~
pact, the canonical coordinates ¢, are not global co~-
ordinates; correspondingly, the quantization group is
compact and the quanial representalion is necessarily
finite-dimensional.

Letus recall that, among the semisimple groups, only
the three-dimensional ones, locally isomorphic to
SL(2, R), admit an invariant contact structure defined
in a natural way within the group manifold.
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3. DYNAMICAL QUANTIZATION

We expound now our procedure with a greater detail
on technical aspects. Let A be a dynamical system
with #» degrees of freedom, 25, its underlying sym-
plectic manifold (phase space), and H{(q, p) the Hamil-
tonian function, in local coordinates. We make now
the following assumptions38:

(a) The system A admits a maximal dynamical
symmetry group §; acting transitively on each energy
surface Z;. Then ;= G /K, where K is the
stability subgroup of some point of ;. As to the
structure of G,, we require only that the derived
algebra of its Lie algebra ®, be @; itself,

Condition (@) implies that the Hamiltonian is a certain
function § of the canonical invariants of G, in the
given canonical realization X, , while the remaining
independent functions of the canonical invariants are
identically equal to constants. In general, the realiza-
tion K, will be a singular one.2? The existence of a
transitive action of G, on Z, implies that all the orbits
of A on Z; are diffeomorphic one to another; the
second part of the condition (@) guarantees, among

the other things, that they are closed, as submanifolds,
and consequently that A is completely degenerate, in
the sense of Ref. 39. In particular, if the orbits are
compact, the usual definition of complete degenera-
tion is recovered.

(8) The canonical realization Xg, is homogeneous.

This means that the transformations of Xg are
homogeneous canonical transformations, which
implies in particular that the canonical generators
are certain homogeneous functions of the canonical
variables.40 Condition (B) is a sufficient condition
{most likely it is also necessary) in order that the
vector field corresponding to the function §1(H)
[defined under (@)] generates a global action in Q,,
of SO(2) or R in the case of compact and noncompact
orbits, respectively. This will allow to give a defini-
tion of a suitable “dynamical group” in which the
Hamiltonian appears as a function of a single element
of the Lie algebra. Let us call D this “Hamiltonian
group” {SO(2) or R} and X its global action in ,,.

(y) A dynamical group § exists having the follow-
ing properties: (i) It contains §, ® D in such a way
that G, is the commutant of D; (ii) it possess a global
transitive canonical action Xg in the phase space
25,, which coincides with the realization defined in
(o) when restricted to G, ® D.

Condition (y) implies that the realization Xg is always
a singular (degenerate) realization, in which the gen-
erating function of the one-parameter subgroup ®
coincides with the free canonical invariant of §,.

It may happen that condition (o) is not strictly veri-
fied, in the sense that the dynamical system A admits
a decomposition in different subsystems which meet
conditions (@) and (8) separately. For instance, both
the situations of compact and noncompact orbits may
be realized corresponding to different open intervals
of energy values (see, for example, the hydrogen atom
case, in the following). In this case, condition (y) must
be formulated for these open submanifolds separately,

since a realization Xg transitive in the whole Q,,
cannot exist on obvious topological grounds. What we
can expect, for analytic Hamiltonians, is that, within
the above submanifolds, there shall be defined canoni-
cal realizations of § which are analytic continuations
of one another. It is worth noticing the strict analogy
between this situation and the quantum one (see the
comments about a theorem by Ingraham,in Sec. 5).

If now all the above conditions are satisfied, we obtain
a dynamical quantization by means of the following
final steps:

(6) The Souriau prequantization is applied to the
singular realization Xs. This provides a unitary re-
ducible representation ®2/® of § within the Hilbert
space L,(Q, Z) of Lebesgue square-integrable func-
tions on the contact manifold Q,,,, subject to the
condition ¢eexp(rZ) = eit/%¢,

We will not face here the technical problems of the
construction of the contact manifold and of the pre-
quantization of Xz. For the mathematical details the
reader is referred to the work of Souriau, who has
already given necessary conditions for the extension
of the action of § on Qy,,;. Sufficient conditions
general enough for our purposes must yet be found;
we shall discuss this point elsewhere.

Once the reduction of ®*/# has been accomplished,
the selection of the irreducible “quantal representa-
tion” ® has to be made according to the following
prescription:

(e) The quantal irreducible representation of §
must be such that every eigensubspace for the in-
finitesimal generator of the Hamiltonian group D
carries an irreducible representation of its commut-
ant G, (the “degeneracy group”).

The irreducibility condition accomplishes the transi-
fion from prequantization to quantization. Souriau
himself has proposed some kind of restrictions for
simple specifical cases but he does not formulate

the general problem in terms suitable for our scheme.
As said above, a definite answer to this question
would be to find a procedure based on geometrical
properties of Q,,,;. Also, questions of analyticity
are most likely to play a fundamental role in the
selection of the quantum representation ®, as strongly
suggested by some recent results by Auslander and
Konstant,1? Dunne4! and Streater.42

We would add a final general remark about our quanti-
zation procedure. The definition of a Hamiltonian
group D, globally realized in the phase space Q,,,

and its identification with a single element of the Lie
algebra of G, allows an intrinsic unambiguous Hamil-
tonian quantization, It is a remarkable fact that the
usual intuitive correspondence between compact
(noncompact) classical orbits and discrete (continu-
ous) spectrum of the quantized Hamiltonian, finds a
rigorous justification within our formulation. As a
matter of fact, according to a theorem by Ingraham,43
the spectrum of the quantized Hamiltonian within the
irreducible representation ® must be either com-
pletely discrete or completely continuous correspond-
ing to D being compact or noncompact, respectively.

It is important to realize that this theorem enables
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us to anticipate the nature of the spectrum for nearly
all the generators of G in ® which are the relevant
observables of the quantum system.

In the remainder of the present paper we will illust-
rate our general proposal in terms of the two out-
standing physical examples of the n-dimensional
harmonic isotropic oscillator and the »-dimensional
hydrogen atom. The general group-theoretic pro-
perties of these systems at the quantum level are
well known and have been discussed in many different
contexts. For our purposes the most relevant ref-
erences are 42, 44-53 (see also the bibliography of
Ref, 54). Another system which couldbe easily treated
is the rotator; however, we will not discuss it in the
present paper.

4. TWO CLASSES OF DYNAMICALLY QUANTIZ-
ABLE SYSTEMS

A. n-Dimensional Isotropic Harmonic Oscillator

The maximal symmetry group G of the Hamiltonian
is SU(n). Its global canonical realization transitive
on the generic energy surface Z, corresponds to a
homogeneous space with stability subgroup SU{(z — 1)
{except for E = 0). Indeed

SSUSU(n)l ~ Szn-]_’ E = 0’
g™ ZSU(”) “0h Eo0 (51)
SUM) ! ’

The whole phase space §,, is filled by energy sur-
faces according to

Q,, = R27 = {0} U [$22-1 x R], (52)

The Hamiltonian flow defines in R27 a global action
of U(1) which, together with SU(»), gives a global
realization of U(n). The explicit local realization can
be found for instance in Ref. 54;the global one follows
directly from the relation55

50(2n) N Spin,R) = Uln). (53)

The most simple noncompact extension of U(n),
namely SU(n, 1), already meets all the requirements
of condition (v). The homogeneous space is

_SU(,1) _ SU@m) X U(1) X R2»

»UWw) STy X o) R (54)

1929

The global realization of SU(z, 1) in R2” is most
simply obtained starting from the linear symplectic
action of SU(n, 1) in C”*1 which leaves the hyper-
surfaces

By B =D 1z12— 512 =— 42,
1
k a real constant, (55)

invariant. fk is fibered by the Hamiltonian flow
generated by H:

Gl X R — Gr+l. {zi(") = Zi(O)eiT
2,.1(T) = 2,,,,(0)e77, (56)

e}nd .the action of SU(r, 1) is compatible with the pro-
jectionIl: Z, » Z, /X5 ; we have chosen  real so that
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Z,® R2 X U(1),8,/Xz~ R27 and 1(z, , 2,,,)
= z,exp(i argz,,,) = a; € C*.

The action of SU(n, 1) thus defined in R2” is symplec-
tic with respect to the fundamental 2-form

w = 3i 2,1da, A da induced by II. The infinitesimal
generators are given by (dX]}# with

2 N n
“:aj+n_k+_1'5ii i/ k2 + Zla,l?
. 1
X = n - , {57)
iai,/k2+21|ai|2] ~Zl),ailz—nzlk2
where
o = (1/\/5) (P, + iqi) (58)

and the submatrix ¢’a, + [k2/(n + 1)]5;; generates
Uln).

Let us note that the construction of the realization of
SU(n, 1) directly provides a_Souriau prequantization,
the contact manifold being 2, itself. In this case the
phase space.admits a global 1-form {poleniial) so that
the contact manifold is a trivial bundle. The pre-
quantization defines a reducible unitary representa-
tion of SU(n, 1) in L,(R2?). The condition (¢) then
selects the so-called “ladder” representation of
SU{n, 1), which is already known to provide the space
of states for the isotropic n~-dimensional harmonic
oscillator. SU(x, 1) is called, in this context, the
“noninvariance” dynamical group of the system.51.53

The effectiveness of the usual correspondential
quantization in terms of the Euclidean canonical
variables can be recovered here owing to the fact
that within the representation ® raising and lowering
operators A, ,A] or self-adjoint canonical operators
Q;, F; can be defined, in terms of which the generator
of U(1) = D takes the usual form.

For n = 1 the procedure is quite simple. A unitary
reducible representation of SU(1, 1) is obtained
following Souriau prescriptions: The normalization
conditions exp(217% Z) = 1,68(Z) = 1, with Z proportion-
al to the Hamiltonian vectorfield X, = (dH)*, give

k2 = 2%. The Hilbert space is defined as follows:

9: {¢ € L,(C2)|pla,eit,a,e7i7) = eitdplay, a,)}.
- (59)
Now, 2, is diffeomorphic to SU(1, 1) through the map-
ping

al/wfz_f’i -~ B, az/\/a;l:—) o, ao* _@B* =1, (60)

and e™/Z induces the rotations

eiT/z O N
(0 e'iT/2>’

this shows that our representation is simply the
representation induced by T — e?*7/2. The reduction
is well known to yield

RU/M = DA/2) g DA/2) g [PDC1/2vi0au(p).  (61)

The choice of D1/2) is forced by requiring that the
energy spectrum be bounded from below. In this case
the condition (¢) is not effective. Of course, the one-
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dimensional systems are quite singular in our
scheme, since the very concept of degeneration
becomes trivial.

It happens here that also the group E(2) satisfies all
the requirements to be a quantization group for the
one-dimensional oscillator. The global canonical
realization in R2 is a projective one in which ¢, p and
the Hamiltonian are the infinitesimal canonical
generators of the translations and of the rotations,
respectively. In this way we recover in a straight-
forward manner the results of Streater.15 It is
remarkable that the results are quite the same, com-
pared with the quantization by means of SU(1, 1), at
least for what concerns the energy spectrum.

Streater discusses, in addition, the case of the potent-
ial Ag4 concluding that an intrinsic quantization with
g and p irreducibly represented is not possibie in
this case. However this conclusion can be bypassed
by our formulation, In fact action and angle variables
define a diffeomorphism between this problem and
the harmonic oscillator. Precisely if H’ = 3(p2

+ Aq%), we have

= (- 1/4/12,/—7,3/2)[1-\( 12 (17)3/4, (62)

Thus our procedure gives the same results of Bohr~
Sommerfeld method. This is true for all differenti-
able one-dimensional Hamiltonians H = 3p2 + V{(g)
which admit only periodic orbits.

H

oscill

B. n-Dimensional Hydrogen Atom

As is well known, the maximal symmetry group for
E < 0is SO(n +1); each energy surface is a homo-
geneous space with stability subgroup SO(n — 1);
therefore, its topological structure is

z, ~ S0 +1) _
SOln i 3 B

(Stiefel manifold as defined, e.g., in Ref. 32, Sec.7.7)
while the entire space is

n+l,2s (63)

QZn = Vas+1,2 X R. (64)
Therealizationof SO + 1)iswell knowninthe cases

n = 2,3 (see Refs. 45>48, 52); for generic » it can be
obtained by a straightforward generalization. Unlike
the oscillator case, the Hamiltonian flow itself does
not define a global action of SO(2) in Q,, since the
period of the motion is a function of the energy. A
global action of SO(2) in Q3. is generated by X -1
=X/ Ty = (dD)*, where X, is the Hamiltonian vector
f1e1d T is the period, and I is the quadratic invariant
of SO (n + 1)56

I1=v}5, M, M

» (65)

Ly =1...,n +1,
The group § must contain the direct product SO + 1)
® SO(2) in such a way that the commutant of SO(2) be
exactly SOz + 1): We are thus ledto § = SO@® + 1, 2).
This group possesses just a symplectic singular
realization within the homogeneous space

SOo(n +1,2) S0(n + 1)
[SOln —1)® SO, )] » [T,,.,®T;] SOk —T1)
XR=Q,,, (66)

where Ty,. ® 77 is a (2n — 1)-dimensional Lie
group, having a Euclidean topology; we denote by » the
semidirect topological product. Let us see in a
greater detail this realization. Call X, , ¢,j = 1,.

n + 3, the generators of SO + 1, 2), M, the genera-
tors of the SO(n + 1) subgroup,S =X, ., ,,,,3 the gene-
rator of the Hamiltonian group D, finally Z D Y
and W, =X, ,.5. The above- ment1oned reailzatx
correspgnds to the orbit of the coadjoint representa-
tion of § through the point 4 € &*:

0 0 0 . 0 0 0]
¢ 0. 000
g = [XU] = (67)
110
01
L. 1.1

X% being the dual base of Xj;. This orbit is a sub-

manifold of G* defined by the following relations:
SMp = ZHWV —
WAZX =0,
ZAZA — WAWA = §2,

W
(68)

A basis for the Lie algebra of the stability subgroup
is given by

My, a,b =1,...,n— 1, generators of SO(n — 1),
Zn+1 + u’n! Z ) vVn*‘l S,

Aln,n*l +85— Zn - ‘Vn*'l’
generators of SO(2,1)® 4

My, +W, M, ..~ Z;, generators of &, _,.

The explicit global structure of the stability subgroup
has been easily derived in the most interesting cases
n = 2, 3, where the special isomorphism SO(4, 2)

~ SU(2, 2) greatly simplifies the calculations. The
geometrical structure of ©2,, is made more apparent
by means of the following considerations: A point of
the orbit is characterized by two mutually orthogonal
(n + 1)-vectors [with respect to SO + 1)] of magni-
tude S; for S fixed the possible choices of Z¢ and W¢
are in a one-to-one correspondence with the maximal
Abelian subalgebras of P inthe Cartan decomposition
30(4, 2) = [s0(4) ® 30(2)] ® p so that the transitivity
of SO(n + 1) ® SO(2) on this set follows from a
general theorem.55

That this realization is actually a global canonical
one is guaranteed by a theorem on co-adjoint repre-
sentations (see Refs. 30,18,12). An explicit atlas of
canonical coordinates in 5, can be constructed using
the techniques of Ref. 29. The Hamiltonian flow,
generated by5? S = mK/v—2mH, in the coordinates
given above, is

Mw = const,
Zv(#) = ze(0)cost + W¥(0)sint,
We(t)= — Zv(0)sint + WH*(0)cost.

(69)
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Let us remark that if we restrict ourselves to the
noncompact subgroup SO(n + 1, 1), the action in Qa,
is still transitive.

Now, the Souriau prequantization of this realization
provides a unitary reducible representation in the
Hilbert space L,(R,,). For the physically interesting
case n = 3, the selection made according to condi-
tion (¢) yields the so-called R, irreducible unitary
representation of SO(4, 2), which has just the following
remarkable properties58:

(i) When restricted to the subgroup G, = SO(4), the
representation R splits into the direct sum of tensor
representations ©(1, [} each DI, I) appearing with
multiplicity one.

(ii) The I2-dimensional subspace § ({), invariant
under SO(4), is an eigenspace for the generator S of
the Hamiltonian flow which commutes with SG(4):
Lep (D -ShL=1f.

(iii) R, remains irreducible when restricted to
S0(4, 1); this has the already mentioned classical
counterpart.

Let us stress the following points:

(1) This irreducible representation R is already
well known to describe the negative energy states for
the three-dimensional hydrogen atom.49,50 In Ref. 50
the quantization group § is called the “dynamical
group” of the hydrogen atom in the sense that all the
electromagnetic bound-bound transitions can be
described in terms of operators belonging to SO(4, 2)
and to its enveloping algebra. The subgroup SO(4, 1)
which is irreducibly represented in the same space
is called there the “quantum numbers” group,
emphasizing the fact that it is sufficient to describe
the whole spectrum of the Hamiltonian and of the
conserved quantities. From our point of view, the
dynamical character of SO(4, 2) in front of SO(4, 1)

is connected with the fundamental fact that SO(4, 2)

contains the Hamiltonian directly as a generator. On
the contrary, within the canonical realization of
S0(4, 1), the Hamiltonian must be defined in the
enveloping algebra of the invariance group G4 with
the consequence that an intrinsic quantization based
on SO (4, 1) would not be a Hamiltonian quantization.
On the other hand, the fact that both the canonical
realization and the unitary representation of SO(4, 2)
are irreducible with respect to SO(4, 1) accounts

for the use of this group as a suitable “noninvariance”
group for the hydrogen atom.47.48.51~53

(2) As shown by Barut and Kleinert (see Ref. 50),
within the representation R, it is possible to define
canonical operators, irreducibly represented, in
terms of which the Hamiltonian recovers its corres-
pondential structure. From our point of view, this
fact accounts for the success of the correspondential
quantization of the hydrogen atom.

(3) ¥ we consider the positive energy portion of phase
space, we have a maximal symmetry group §4 which
is an “analytic continuation” of Gy, actually SO(3, 1).47
The dynamical quantization procedure should still be
possible within the dynamical group SO(4, 2) but with
the Hamiltonian identified with a non-compact gen-
erator e.g.with X, through “analytic continuation”
(see the discussion given in Sec. 3).
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1t is shown that (1‘) the angular momentum of a gravitational geon must be zero if it is axisymmetric and (2) the
mass of a gravitational geon must be zero if it is stationary,i.e., if the space-time possesses a Killing vector
which is timelike at infinity, Here angular momentum and mass are defined in terms of the asymptotic form of
the metric at large distances;they are physical quantities which can be experimentally measured by distant
observers. Since the gravitational geons previously considered are highly dynamical on a small scale, our re-
sult on the vanishing mass of a stationary geon does not conflict with previous analyses showing that gravita-
tional geons can have mass. Similarly, our results do not exclude the possibility of gravitational geons having
nonvanishing angular momentum if they are not strictly axisymmetric.

1. INTRODUCTION

A gravitational geon may be described physically as
a localized region of pure space—time curvature.
More precisely, we define a gravitational geon to be a
solution of the vacuum Einstein field equations,

» (1)

which is (1) nonsingular, (2) topologically Euclidean,
(3) asymptotically flat, i.e., there exist coordinates

x# such that on the hypersurfaces x0 = const the
metric takes the form g, =1n,, + 0(1/7) at large dis-
tances, where 71, = diag (- 1, 1 1, 1) and 7 is a radial
parameter, and (4) approxlmately stationary in the
asymtotically flat region,i.e., for sufficiently large 7,
derivatives of the metric with respect to x0 can be
neglected compared with derivatives with respect to
the spacelike coordinates xf. Gravitational geons as
well as electromagnetic and neutrino geons have been
studied as models for material bodies free from the
uncertainty about any equations of state.l

In this paper, we prove that a gravitational geon can-
not have a nonvanishing angular momentum if it is
axisymmetric. We also show that the mass of a gravi-
tational geon must vanish if it is stationary.

In Sec.2 we review the definition of angular momen-
tum and mass used in this paper. We obtain expres-
sions for these quantities in Sec. 3 which are used in
Sec. 4 to prove our results on gravitational geons.

2. DEFINITION OF ANGULAR MOMENTUM AND
MASS

The discussion of this section follows closely that of
Misner, Thorne, and Wheeler.2

The space~time metric of any asymptotically flat
solution of Einstein's equations which is approxi-
mately stationary in the asymptotically flat region
can be put in the following form?2 for large 7:

4s? = _ (1-~2ﬂ +——>dt2
7 r2
2m

— 4€]lik<r > dtdxi + (1 + v

4 Sm >éjkdx1dxk+ o(l > dck dx”, 2)
2'r

Here Roman indices run from 1 to 3, Greek indices
run from 0 to 3,and €;,, is the completely antisym-
metric tensor. The parameters mand J = ((J1)2 +
(J2)2 + (J3)2)1/2 of a space-time are uniquely de-
fined by Eq. (2), 1i.e., their values cannot be changed
by a coordinate transformation which preserves the
form, Eq.(2), of the metric. If the gravitational field
is weak throughout the space—time, the linearized
theory of gravity yields the following expressions?
for m and J*:

m = fToodei’ (3)

Jh= €,,, [ (x1Tmo — xn T)d3xi, (4)
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1. INTRODUCTION

A gravitational geon may be described physically as
a localized region of pure space—time curvature.
More precisely, we define a gravitational geon to be a
solution of the vacuum Einstein field equations,

» (1)

which is (1) nonsingular, (2) topologically Euclidean,
(3) asymptotically flat, i.e., there exist coordinates

x# such that on the hypersurfaces x0 = const the
metric takes the form g, =1n,, + 0(1/7) at large dis-
tances, where 71, = diag (- 1, 1 1, 1) and 7 is a radial
parameter, and (4) approxlmately stationary in the
asymtotically flat region,i.e., for sufficiently large 7,
derivatives of the metric with respect to x0 can be
neglected compared with derivatives with respect to
the spacelike coordinates xf. Gravitational geons as
well as electromagnetic and neutrino geons have been
studied as models for material bodies free from the
uncertainty about any equations of state.l

In this paper, we prove that a gravitational geon can-
not have a nonvanishing angular momentum if it is
axisymmetric. We also show that the mass of a gravi-
tational geon must vanish if it is stationary.

In Sec.2 we review the definition of angular momen-
tum and mass used in this paper. We obtain expres-
sions for these quantities in Sec. 3 which are used in
Sec. 4 to prove our results on gravitational geons.

2. DEFINITION OF ANGULAR MOMENTUM AND
MASS

The discussion of this section follows closely that of
Misner, Thorne, and Wheeler.2

The space~time metric of any asymptotically flat
solution of Einstein's equations which is approxi-
mately stationary in the asymptotically flat region
can be put in the following form?2 for large 7:

4s? = _ (1-~2ﬂ +——>dt2
7 r2
2m

— 4€]lik<r > dtdxi + (1 + v

4 Sm >éjkdx1dxk+ o(l > dck dx”, 2)
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Here Roman indices run from 1 to 3, Greek indices
run from 0 to 3,and €;,, is the completely antisym-
metric tensor. The parameters mand J = ((J1)2 +
(J2)2 + (J3)2)1/2 of a space-time are uniquely de-
fined by Eq. (2), 1i.e., their values cannot be changed
by a coordinate transformation which preserves the
form, Eq.(2), of the metric. If the gravitational field
is weak throughout the space—time, the linearized
theory of gravity yields the following expressions?
for m and J*:

m = fToodei’ (3)

Jh= €,,, [ (x1Tmo — xn T)d3xi, (4)
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where T# is the stress—energy tensor of matter.
Thus, in the weak field limit,» and J may be identi-
fied, respectively, as the total mass and angular
momentum. In the strong field case, Eqs. (3) and (4)
are, of course, no longer valid, but the expansion of
the metric, Eq. (2), still holds in the asymptotically
flat region. In the strong field case, we define the
total (active gravitational) mass to be m and the total
angular momentum to be J. Both » and J have direct

¢ 4

— [1—2m/7 + 0(1/r?)] [(— 2J sin26)/r + O(1/r2)] 0(1/73)

72 sin26(1 + O(1/7))

Buw = SYM

Note that, comparing Eq. (5) with the Kerr metric,

ds2? = _ <1 —-—2—?’>dt2 _ 4mar sin?§ de
z
2y gind
+ <(1'2 + a2) sin26 + 2_ma_z1_'51_n0)d(p2
dr2
+3 (deZ + T)’ (6)
where

Z=72 + a2 cos26, (7
A= 72— 2mr + a2, (8)

we can immediately see that the angular momen-
tum of the Kerr metric is given by3

J = ma. 9

3. FORMULAS FOR J AND m

We now obtain formulas for J and m which will be
used in Sec. 4.

Let ¢ be any vector field which reduces to the vector
field /3¢ at large distances, where ¢ is the angular
coordinate defined at large distances by the form of
the metric, Eq. (5). (The definition of £t is left arbit-
rary in the nonasymptotically flat region.) Then, we
have3

)
=—1im
167 7

= ﬁl&%fﬂt const(_ g)1/2(§r.'t - §tv"’)d9d§0,

3

r.tconst™®

(10)

where £, ¢, 7, § are the coordinates of Eq.(5). To
prove (10), we note that since & agrees with 2/9¢ for
large 7, we obtain by direct calculation from the
metric of Eq, (5) that

Erit = g‘“l"Ja = 3J sin26/72 + O(1/73), (11
g = gralt, =—3J sin26/r2 + 0(1/r3), (12)
(—£)1/2 = »2 gind [1 + 0(1/7')]' (13)

J. Math. Phys., Vol. 13, No. 4, April 1972

J. M. COHEN AND R. M. WALD

physical significance: A distant observer can
measure m by a study of Keplerian orbits and can
measure J by observation of gyroscope precession
resulting from the dragging of inertial frames.
Transforming from the symptotically Minkowskian
coordinates of Eq.(2) to asymptotically spherical
polar coordinates and aligning the z axis in the direc-
tion of J, we put the metric of Eq.(2) into the follow-
ing form which is more useful for our purposes:

4 8
0(1/72)
0(1/r2) 0(1/7) (5)
1+0(1/7) 0(1/72)

¥2[1 + 0(1/7)]

]
Equation (10) then follows immediately.

A similar calculation establishes the following formu-
1a for m. Let ¥* be any vector field which agrees
with @/9¢ for large values of ¥, Then we have4

1
m=-— a’};i}g 7.t const*dw

=8i J— gnr2wtizyrdedy  (14)
i

4. APPLICATION TO GRAVITATIONAL GEONS

The results of this paper now follow from Egs. (10)
and (14).

The assumption that the space~time is topologically
Euclidean implies that the 2-surface of constant 7
and f over which the integral, Eq. (10), is to be taken
is the boundary of the interior part of the hyper-
surface, ¢ = const. Hence, the divergence theorem
implies

1
J = 16_”ft:constd’.{dg

-1 S t-const(— @)1/2(nit — £t:w), drdode.  (15)
167 '
If the space-time is axisymmetric, we may take & to
be the axisymmetric Killing vector. Now, for a Kill-
ing vector, we have

Ew T84y =0. (16)
Hence, we have

(Ewst — ghu), = 288, . (1
In addition,

g, =0, (18)
and by the Ricci identity we thus obtain

B, = o, — EY = RV (19)

Thus, for an axisymmetric, topologically Euclidean
space—-time, we have
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1 X
J = a ft:const('_ g)1/2R¢td3x’. (20)
[Note that, in Eq.(20), ¢ is fixed by the symmetry but
the choice of ¢ is arbitrary except inthe asymptotical-
1y flat region.] For a gravitational geon R Vis zero
by virtue of the field equation (1), and so for an axi-
symmetric gravitational geon Eq. (20) yields

J =0. (21)
An identical calculation starting from Eq. (14) shows
that for a stationary, topologically Euclidean space—
time,

1 .
m =— E ft' const(_ g)l/thtdet' (22)

(Here t is fixed throughout the space—time by the
stationary symmetry.) Hence, for a stationary gravi-
tational geon,

m = 0. (23)
Since G,! = R}, it follows from Eq. (20) that J is a
conserved quantity associated with axial symmetry
and arising from the conservation law (G *£#)., = 0.
This quantity was used in Ref. 3 to define the angular
momentum of an axisymmetric space—time. However,
since G, ! = Rt — 3R, we see from Eg. (22) that in the
stationary case m is no!/ (in general) equal to the
conserved quantity arising from (G "y *)., = 0, except
for space-times with vanishing scalar curvature R
(e.g., electiovac space-times).

Note that if matter is present in the interior, one
obtains m > 0 for a stationary, topologically Euclidean

space-time if R, = T,! — 3T < 0. For perfect fluid
matter this condition becomes p + 3p > 0.

The proof of Eqs. (21) and (23) does not apply to black
holes because for black holes the spacelike hyper-
surfaces either contain a singularity or have non-
Euclidean (“wormhole”) topology. In either case,
Eq.(15) does not follow from Eq. (10). For further dis-
cussion see, e.g., Ref. 5 and the references cited
there.

It should be emphasized that, in the proof of Eq. (21),
it is required that the geon be strictly axisymmetric,
i.e., axisymmetric on a small scale, not merely
approximately axisymmetric when averaged over
some region. Similarly, in the proof of Eq.(23), the
geon must be strictly stationary. Since the gravita-
tional geons previously considered are highly dynami-
cal on a small scale, our results do not conflict with
analyses which find them to have positive mass.1,6
Nor do our results exclude the existence of geons
having angular momentum which are not axisym-
metric on a small scale, e.g., on account of gravita-
tional waves traveling in the ¢ direction.
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In this paper the exterior Einstein equations are explored from a differential geometric point of view. Using
methods of global analysis and infinite- dimensional geometry, we answer sharply the question: “In what sense
are the Einstein equations, written as equations of evolution, a Lagrangian dynamical system?” By using our
global methods, several aspects of the lapse function and shift vector field are clarified. The geometrical sig-
nificance of the shift becomes apparent when the Einstein evolution equations are written using Lie derivatives.
The evolution equations are then interpreted as evolution equations as seen by an observer in space coordi-
nates. Using the notion of body- space transitions, we then find the relationship between solutions with different
shifts by finding the flow of a time-dependent vector field. The use of body and space coordinates is shown to
be somewhat analogous to the use of such coordinates in Euler's equations for a rigid body and the use of
Eulerian and Lagrangian coordinates in hydrodynamics. We also explore the geometry of the lapse function,
and show how one can pass from one lapse function to another by integrating ordinary differential equations.
This involves integrating what we call the “intrinsic shift vector field.” The essence of our method is to extend
the usual configuration space 9 = Riem(M) of Riemannian metrics to I X D X M, where T = Co(M,R) is the
group of relativistic time translations and D = Diff(M) is the group of spatial coordinate transformations of M,
The lapse and shift then enter the dynamical picture naturally as the velocities canonically conjugate to the
configuration fields (£,7,) € 7 X D. On this extended configuration space, a degenerate Lagrangian system is
constructed which allows precisely for the arbitrary specification of the lapse and shift functions. We reinter-
pret a metric given by DeWitt for 9 as a degenerate metric on D X M. On D X M, however, the metric is
quadratic in the velocity variables. The groups 7 and D also serve as symmetry groups for our dynamical
system. We establish that the associated conserved quantities are just the usual “constraint equations.” A pre-
cise theorem is given for a remark of Misner that in an empty space-time we must have 3¢ = 0. We study the

relationship between the evolution equations for the time-dependent metric g, and the Ricci flat condition of
the reconstructed Lorentz metric g£, Finally, we make some remarks about a possible “superphase space”
for general relativity and how our treatment on 7 X D X 9 is related to ordinary superspace and superphase

space.

1. INTRODUCTION: THE EINSTEIN EQUATIONS OF
EVOLUTION

Our aim in this paper is to study the Einstein equa-
tions of evolution as a dynamical system, to explore
the geometrical meaning of the lapse function N and
shift vector field X introduced by Wheeler,! to intro-
duce the gauge groups 7 and D appropriate for the
dynamical formulation of general relativity, and to
study the interrelationships of the evolution equations
with N and X, with the four-dimensional empty space
condition B,z = 0, and with the gauge groups 7 and D.
The gauge groups 7 and D and the meaning of N and
X are explained below.

Basic work on the problem of regarding the Einstein
equations of evolution as a dynamical system has
been done by Arnowitt, Deser, and Misner,2 by
DeWitt,3 and by Wheeler.1 We shall reformulate this
work using the general theory of Lagrangian systems
and exploiting differential geometric ideas. We shall
also be extending this work and viewing it in a way
which differs from the original approaches in several
essential ways. Perhaps the most fundamental of
these ways may be explained as follows: One usually
fixes a three-dimensional manifold M (taken to be a
spacelike hypersurface in the final space~time) and
uses as configuration space the space M of all
Riemannian metrics on M, To incorporate the lapse
function N and shift vector field X in what we believe
is a natural way, we have found it necessary to en-
large M to 7 X D X M, where

7 = C*(M;R) = all smooth real-valued functions,
£:M — R, which one can think of as the “relativistic
time translation group”

and

D = Diff(M) = all diffeomorphisms n: M — M, which
one can think of as the “active” coordinate transfor-
mations or the “rotation group” of M.

The sense in which 7 is the relativistic time trans-
lation group and in which D is the rotation group of M
is described briefly below and in detail in Secs. T and
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5, respectively. The groups 7 and D are closely re-
lated to the lapse and shift as we shall explain shortly.

The lapse N, a real valued function, represents the
clock rates for an observer relative to a reference
system of clocks. The clock rates N depend on the
space-time point for the observer. The fact that we
change our clock rates, that is, allow an N not iden-
tically one, changes the equations of motion for the 3-
metric g;; which describes the geometry of the space
M (the equations are written out below). Similarly a
shift X is a vector field on the 3-manifold M which
represents two observers in relative motion with
velocity described by X, Again, a choice X = 0 will
change the equations of motion.

The introduction of T X D is essentially the introduc-
tion of the configuration variables (£, ), whose cano-
nically conjugate velocities are the lapse N and shift
X (when the tangent space to 7 X D is “pulled back”
to the identity; see Secs.4 and 7 for a description of
this process). On 7 X D X M we construct an infi-
nite-dimensional degenerate Lagrangian system

L: T x DX IM) - R. The degeneracy is, roughly
speaking, in the direction of T X ©. The degeneracy
allows precisely for the arbitrary specification of the
lapse function and shift vector field.

In our approach, we also consider the geometrical
significance of the lapse and shift in the equations of
evolution. In the treatment of Arnowitt, Deser, and
Misner,2 the lapse and shift are incorporated into the
Lagrangian on I as Lagrange multipliers. The con-
straint equations (see below) are then obtained by
varying the lapse and shift. In our formulation this
situation is rather different. We consider the lapse
and shift as velocities canonically conjugate to some
configuration field variables rather than as Lagrange
multipliers. The degeneracy of our Lagrangian on

7 X DX I allows an arbitrary lapse and shift to be
consistent with the equations of motion.

We consider the two basic constraints of the field
equations, namely the divergence constraint

5((Trk)g — kg, = 0 (1.1)
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and the Hamiltonian constraint
% (g, k) 1, = 3((Trk)2 — ('R, + 2R(g), = 0 (1. 2)

(see below for definitions) as conservation laws
rather than as “constraints.” We shall show (see Sec.
6) that conservation in time of (1.1) is a result of the
invariance of the evolution equations under the co-
ordinate symmetry group D, (1.2) is first established
in Sec. 3 under the hypothesis that 6m = 0 by a
straightforward computation. What is interesting,
however, is that we shall show that the pointwise con-
servation of 3y, is a necessary consequence of the
“full relativistic invariance” of the theory (in a sense
made precise in Sec. 7). Our theorem is a rigorous
version of remarks of Misner42 that a “topologically
invariant” theory must have an identically zero
Hamiltonian.

Note: Our Lagrangianon 7 X D X9 is homogeneous
and degenerate and our assertion about Xy, is dis-
tinct from and not to be confused with the elementary
remark (see Ref.5) that the energy of a homogeneocus
Lagrangian is always zero, as 3 is the energy of the
Lagrangian before it is made homogeneous. We also
remark that the infinite dimensionality of the invar-
iance groups leads to pointwise integrals of the motion
rather than integrated conserved quantities which one
normally obtains.

We now formally write out the Einstein system for a
given lapse N and shift X. It is important for the
later geometrical development that certain combi-
nations of the terms be recognized as Lie derivatives
and Hessians.

Note: In the following, f occurring as a subscript
indicates the variable {; it is never used to denote
differentiation. Often the time-dependence of a field
will be implicit.

The Einstein System (E): Let X, be a time-depen-
dent vector field on a fixed compact orientable three-
dimensional manifold M, and let N, be a time~depen-
dent positive real valued (scalar) field on M, that is,
N,m) > 0for allm € M andt € R. The Einstein sys-
tem is the system of evolution equations

0g,
Yor = Ny — Ly, 8, 1.3)
ok,

/# = Ntht(kt) —2N,Ric(g,) + 2Hess(V,) — Ltht

with the supplementary conditions

P((Trkt)gt - t) =0,

. (1.4)
! (g, k)= 3(Tth)2 — &, k) + 2R(g,) = 0.

Our notation is the following:

& is a time-dependent metric on M,

Ltht = Lie derivative of g, with respect to the
time-dependent vector field X, (in co-
ordinates, Ly & = X, + X, with |, de~

. $E . JiE .
noting the covariant éenvative with res-
pect to the time-dependent metric),

= Lie derivative of %, = X%k, + k;, X"

L, %
Xyt ”. 7
+ ]lX]l’

547

Ric(g,) = (Ricci curvature tensor formed from g)
=Rz’j = I‘fj,k‘ in,j + rzkjrfcz - rilkrfj,

R(g,) = scalar curvature = R%,

Hess{N) = Hessian of N = double covariant deriva-
tive = Ny,

ok = divergence of k = (8k), = — k/,;,

Trk = trace k = gWk;; = ki,

bk = dot product for symmetric tensors = &; ¥,

kX k = cross product for symmetric tensors
- kilkjl’

S, (k) =k X k— 3(Trk)e = kbl — 3(g™%,,, k;;.

Nole: We have assumed M compact only to sim-
plify the discussions. It is surely not essential.

The Lorentz geometry on (— ¢, €) X M corresponding
to a solution g, = 3g, of the Einstein system is given
by

4g pdxedx® = (XiX; — N2)dt 2 —2X dxidt + g, dxidx,

where xo = (¢, xi) and XiX, = 3g(X, X). For this to be
Lorentz, we require 3g(X, X) < N2 initially (and hence
for a short ¢ interval).

Our conventions in this paper will be that, for expres-
sions written in coordinates, Latin indices will run
from 1 to 3 and Greek indices from 0 to 3. Our
Lorentz metrics will have signature (—, +, +, +).

In the Einstein system, all the geometric quantities
(such as Ric, Hess, 6, and Tr) are computed with res-
pect to the time-dependent metric g,. These equations
appear in coordinates in Arnowitt, Deser, and Misner
(see Ref. 2, p. 236 or Ref. 6, p. 1325) in terms of the
tensor density ™ = ((Trk)g — k)Vdetg dx1 A dx2 A dx3
(using the momentum rather than the velocity vari-
able). k, our energy density (the second of the supple-
mentary conditions), and the second evolution equa-
tion are minus twice the corresponding quantities in
Ref. 6, and our shift is minus theirs. Our change of
numerics makes the system more manifestly a
second-order system with dg,/0f =k, when N = 1,

X = 0 (see Sec. 3); changes the energy to the form

K + V,where V is now the integrated scalar curva-
ture (and not its negative; see DeWitt3 and Sec. 3);

and introduces a factor of ; into the kinetic energy
part X of the energy density. The reason for changing
the sign of the shift is explained at the end of Sec. 4.

Unfortunately, the Einstein system, when written in
coordinates, obscures the central role played by the
presence of the Lie derivative in the evolution equa-
tions. In fact, the apparent complexity of the equa-
tions as they appear in Refs. 2 or 6 dissolves when it
is recognized that the last five terms in Ref. 6 or the
last three terms in Ref, 2 are just the Lie derivative
of either 2 or 7 (see also remarks in Sec. 6). Thus,
when written intrinsically, the Einstein system is
geometrically simplified.

The Lie derivative terms have a natural geometric
interpretation related to changing from “space” to
“body” coordinates in a manner similar to that of the
rigid body and hydrodynamics (cf. Ref. 7). This may
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be more specifically described as follows. The shift
X, is a time-dependent vector field on M, and as such
it has an integral, or flow 1, € D with 5y = (iden-
tity diffeomorphism of M) = id,,. The solutions of the
Einstein system with the shift X and those with the
shift zero are related by the active coordinate trans-
formation 7; in the usual way one transforms metrics.
Moreover, we consider the manifold M to be the
“body” and the flow 7, of the shift vector field as be-
ing a motion or “yofation” of M. Then if we assume
that the time-dependent metric field g, is “dragged
along” by the rotation of M, the Einstein system can
be interpreted as the equations of evolution as seen
by an observer fixed in space, taken to be “off” the
rotating manifold. This interpretation is worked out
in Secs. 4 and 5,

The lapse N, enters the evolution equations in a
slightly more subtle way, as it involves a system of
clocks on M whose rates may be different at different
points of M. The complication due to the possible
space-dependence of N, is reflected in the Hessian
term in the Einstein system (E).

As for the shift vector field we show how to solve
the Einstein equations for a general lapse N, given
the solution for N = 1, again by integrating a system
of ordinary differential equations. Conversely, given
a solution g for a given lapse N, we shall show how to
construct a vector field on M, called the intvinsic
shift of the lapse N, whose flow, together with a pro-
per time function, brings us into a Gaussian normal
coordinate system in which N = 1, The intrinsic shift
vector field may be interpreted as a “sliding effect”
due to the fact that N, is not constant in the space
variable.

Finally, we remark that on D X 9, our Lagrangian is
quadratic in the velocities (X, 2g/9t) and is therefore
of the classical form—kinetic energy minus potential
energy, with the kinetic energy being derived from a
degenerate metric on D X M, In fact the evolution
equation 0k /3t =k X k — 3(Trk)k — L 4k, along a solu-
tion for which the kinetic energy = 0, is just the geo-
desic equation on D X M with respect to the afore-
mentioned metric. When written just on I, the full
Lagrangian does not have this classical form.

We now summarize the topics treated in this paper:

1. A treatment of infinite-dimensional degenerate
Lagrangian systems (Sec.2). A basic conservation
law is given, similar to the nondegenerate case, which
generalizes the classical conservation laws.89.11

2. The introduction of the gauge groups 7 and D
and of the space 7 X D X M as the configuration
space for the Einstein system. The gauge groups 7
and D are the analog for the dynamical formulation
of the coordinate gauge group of the four-dimensional
geometry,

3. A geometrical interpretation of the lapse and
shift functions as the velocities canonically conjugate
to the new configuration variables (¢§,7) € T X D,

4. A treatment of the Einstein system as an infinite-
dimensional degenerate Lagrangian system on a suit-
able subset of T X D X M (Secs.2and 7). On D XM
we construct a Lagrangian L = K — V, where K is
quadratic in the velocities (X,k),andon T X D XM a
Lagrangian homogeneous in the velocities (V, X, ).
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The quadratic nature of the Lagrangian on D x M
results in evolution equations quadratic in the veloci-
ties (X, 2) which is analagous to the quadratic nature
of the evolution equations for geodesics on a manifold
and for hydrodynamics and the rigid body,

5. A derivation of the supplementary conditions for
the Einstein system as conserved quantities (Secs. 3

and 10), using conservation laws for degenerate Lag-
rangian systems and infinite-dimensional symmetry

groups (T and D), together with a precise explanation
of why the energy density for the empty space-time

equations must be identically zero; cf. Misner.4

6. The recognition of the central role played by the
Lie derivative terms in the evolution equations, The
use of Lie derivatives shows that these terms in the
evolution equations are geometrically simple and
makes their geometric meaning transparent.

7. An interpretation of the shift vector field X, as
generating a “rotation” of M and of the evolution
equations as being the equations as seen by an obser-
ver in space coordinates. Using the notion of body-
space transitions, we then show that if we can solve
the equations for X = 0, then they can be solved for
any X by integrating a system of ordinary differential
equations (Corollary 4.1). Similarly, we give a geo-
metrical derivation of how if one can solve the Ein-
stein equations for N = 1, then they can be solved for
an arbitrary N by integrating geodesic equations,
again ordinary differential equations (Theorem 10, 3).

8. A geometrical derivation of the Hessian term
Hess(N) in the Einstein system using generalized
Gauss—-Codazzi equations in coordinates which are
not necessarily normal Gaussian (Sec. 8).

9. The interpretation of the lapse N, as related to
the tangent of the curve 7, € T where 7,, the proper
time function, can be interpreted as a change of time
parameter for each point m € M from the canonical
parameter of evolution to an arbitrary parameter
of evolution (Sec. 10).

10. The introduction of a new object, the intrinsic
shift Y of N, whose integration gives the rest of the
Gaussian coordinate system (Theorems 10.1 and .
10.2), The intrinsic shift is interpreted as the “tilt~
ing effect” of the coordinate system due to the spatial
dependence of N,

2. DEGENERATE LAGRANGIAN SYSTEMS

In this section we study the notion of a degenerate
Lagrangian system in the spirit of Ref. 8. Degenerate
Lagrangian systems have been used in some previous
analyses of general relativity and are fairly common
in classical mechanics (cf, Ref.9). Here we shall
treat such systems from the coordinate independent
or global point of view.

We are going to be working with spaces of maps, for
example, the space of all Riemannian metrics 9. For
simplicity we assume that all such objects are C,
Properly one should work with Sobolev spaces, but
the modifications needed are fairly routine and do
not involve any new physical ideas (see Refs.10 and
11).

For our purposes we find it convenient to use the

general ideas about Hamiltonian and Lagrangian sys-
tems as developed in Ref. 8 rather than variational
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principles. The chief difference with Ref. 8 is that
we must use infinite-dimensional configuration
spaces. We, therefore, shall assume that the reader
has some aquaintance with calculus in infinite dimen-
sional spaces and manifolds, as expounded for exam-
ple in Ref.12. As mentioned above, the spaces are
usually spaces of maps;in the physics literature the
derivative of a function defined on such a space is
often called its “functional derivative.”

Let B be a manifold, possibly infinite-dimensional
{modeled on a Fréchet or Banach space). Let TB
denote its tangent bundle and let 7: TB — B be the
natural projection map. For b € B, let T, B be the
tangent space at b, that is, the fiber over b; T,B =
1(b).

Let L: TB — R be a mapping (called the Lagrangian
or action integral) and let L, be the restriction of L
to T,B. The derivative of L,, DL,(v), at a point

v € T,B defines a map FL: TB — T*B (T*B is the
contangent bundle), called the fiber derivative or
Legendre transformation. As in Ref. 8,using FL, one
obtains a closed 2-form w, (i.e.,dw; = 0) on TB by
pulling back the canonical symplectic structure on
T*B. If B is modeled on a linear space E, so locally
TB looks like U X E where U C E is open, then

w,(u, e}, for (u,e) € U X E, is a skew-symmetric
bilinear form on E X E given by

zwL(u, e)'((e]_, ez)) (63, 94))
=D,(D,L{u,e) e)) e;—Dy(DyL{u,e) e3) ey
+ DyD,L(u,e) ey e; —DyD,Llu, €) ey ey,

where D,, D, denote the partial derivatives of L.

We say w; is (weakly) nondegenevate if w,(u, )
(e1,ey), (e3,¢e,)) =0 for all e5, e, € E implies that
ey, ezﬁ = 0. However we will want to allow for de-
generate w;, so we do not make this assumption. We
say that L is degenevate if w; is degenerate (as a
2-form). It is easy to see that w; is nondegenerate
iff D,D,L(u, €) is nondegenerate.

The action of L is defined by A: TB > R, A(v) =
FL(v)'w,and the energy of L is E = A — L. In charts,

E(u,e) = D,L(u,e)-e — L(u, e)

and in finite dimensions it is the usual expression

. oL .. .
E(q,q) = — ¢* —~ Llg,4).
gt
Now given L, we say that a vector field Z on TB is a
Lagrangian vector field or a Lagrangian system for
L if the Lagrangian condition holds:

2w, ()(Z(v),w) = dE(v)w

for allv € T,B, w € T{TB). Here dE denotes the
differential of E.

If w; were a {weak) symplectic form, i.e., nondegene-
rate, there would be at most one such Z. The fact
that w; is degenerate however means that Z is not
uniquely determined by L so that there is some arbi-
trariness in what we may choose for Z. For the
Einstein system, this degeneracy will correspond to
an arbitrary choice of lapse and shift.

It should also be stressed that, in general, . need not
have a corresponding Z. If there is one, we say that

we can find consistent equations of motion for L. As
above, there can be several equations of motion con-
sistent with L.

The dynamics is obtained by finding the integral
curves of Z; that is, the curves v(f) such that v{t) € TB
satisfies (dv/dt) (f) = Zv(#)). From the Lagrangian
condition, it is trivial to check that energy is con-
served even though L may be degenerate.

Proposition 2.1: Let Z be a Lagrangian vector
field for L and let v(f) € TB be an integral curve of
Z. Then E(v(t)) is constant in ¢,

Proof: By the chain rule,
2 EQ() = dE@®)v' () ~ dE@(®)- 26 ()

= 2w, (20 1), 20 E))
= 0 by the skew symmetry of w, .2

For a general degenerate Lagrangian system, Lag-
range's equations also hold, if we assume that Z is
second order. That Z is second order means that, in
a chart U X E, Z has the form Z(u, e) = (e, Z,(u, e)).
(See Refs. 8 and 12 for the intrinsic definition of
second order.)

Proposition 2.2: Let Z be a Lagrangian system
for L and suppose Z is a second order equation. Then
in the chart U X E, an integral curve («(t), v(¢)) e
U X E of Z satisfies Lagrange's equations:

di
§£—<t) = v(t),

ng(DzL(ua»,v(t»-w) = D, L), o) @
for all w € E. In case L is nondegenerate,
% =1{D,DyLu,v)} 1 {D,L{w,v) — D,D,L(u,v) v}

Proof: We work in a chart U x E so that Z{u, e) =
(e, Z,(u, e)). From the definition of E, we have
dE@w,e) (e,,e;) =D (DyL(u,e) e) e; +
DyD,L(u,e) e e, —D L(u,e):e;. Using the formula
for wy, the condition on Z, may be written, after a
short computation, as

D,L,e) e, =D (D,Llu,e) e,) e
+ Dy(D,Lu,e)  Z,lu,e)) e,

for all e; € E.

If (u(2),v(#)) is an integral curve of Z, we obtain
(where the dot means d/dt)
DiLw,v) e; =D DyLu,it) e, i +D,D,Lu,it) it e,

d .
:a?DzL(u,u) ° el

by the chain rule.®

We wish to emphasise a special case of Proposition
2.2 for later use. Suppose that (,) is a symmetric

bilinear form defined on each tangent space of B; we
shall refer to {,) as a metric. Define L : TB - R to
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be the kinetic energy L(v) = 3{v,v). Suppose that the
metric is nondegenerate, which implies that the Lag-
rangian L is also nondegenerate. Then Z is called
the geodesic spray and one can easily check from
Proposition 2. 2 that in the finite-dimensional case,

L) = %gi].vivj and  Z,l,e) = — Thu)eies

where 1“5. are the Christoffel symbols of the metric
8ije

Thus the integral curves of the geodesic spray are
given by v(f) = dx(¢)/dt, where x(t) is a geodesic on B.
Now let V:B — R be given and consider the Lagran-~
gian L(v,) = 3{v,,v,) — V(b). Then from Proposition
2.2 we see that the Lagrangian vector field for L is
given by Z(u,e) = (e, Sy, e) — gradV(u)), where S is
the spray of the metric and where gradV is the gra-
dient of V, a vector field on B defined by

(gradV(b),v,) = dV () v,,

where dV(b) is the differential of V evaluated at 5.
Again, in the finite-dimensional case, gradV =
g499V/0xj.

We remark that if w; were nondegenerate, Z would
automatically be a second order equation (cf. Ref. 8).
But for a general w;, a Lagrangian vector field Z need
not be second order; if it is not, Lagrange's equations
may fail—and do in some important examples, such as
when a quantum mechanical system is regarded as a
Lagrangian system.

Often L is obtained in the form
. ou .

L{u,u) = fMeB <u,a—’—6—k,u> dx.
Here M is some fixed manifold, say R% u is a scalar
or possibly tensor field on M and £ is a given scalar
function with the indicated arguments. The space of
the u's forms the manifold B and the Lagrange's
equations can be converted to the usual Lagrange
density form.

We next give the basic conservation law for Lagran-
gian mechanics. A key point is that the validity of
the result is not affected by the fact that L may be
degenerate.

Proposition 2.3: Let Z be a Lagrangian vector
field for L: TB — R, and suppose Z is a second-order
equation.

Let &, be a one-parameter group of diffeomorphisms
of B generated by the vector field Y : B —» TB. Sup-
pose that for each real number {, L°T®, = L. Then
the function P(Y): TB—» R, P(Y){v) =FL@)'Y isa
constant along integral curves of Z.

Pyroof: Let v(t) be an integral curve for Z. Then
we shall show that (d/dt) P(Y)}(v(t)) = 0. Indeed,in a
coordinate chart, if (), v(#)) is the integral curve,
we get from the chain rule

;—t {FL@®) Y} = % {D,L(u(t),v(8) - Y @(2)}

= D,D,L@(®), v() - Y @) -u'(t)
+ DD, L), v(®) Y () - v'(2)
+ DyLu(®),v () - DY () -u’(2).
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Now the condition that Z be the Lagrangian vector
field of L means exactly that the first two terms
equal D, L{u(t),v(t)) - Y (u(t)) (see the proof of Pro-
position 2. 2 above), However if we differentiate
L-T®, with respect to ¢ we obtain for any point w,v),

0= ‘%L(d),(u),Dth(u)-th:O
=D L{,v) Y() + D,Lu,v) DY) v,

Comparing this with the above gives (d/dt{FL(v)-Y}
= 0 and proves the assertion.®

Proposition 2.4: Let L :TB — R be a Lagrangian,
possibly degenerate and let Z be a Lagrangian vector
field for L. Suppose ®: B —» D is a diffeomorphism.
Set L: TD—» R, L = L-T®"1 where T$: TB —» TD is
the tangent (d~erivative) of ®, Then a Lagrangian vec-
tor field for L is given as follows:

Z: TD > T2D, Z = T(T®)ZoT®"1 = (Td),Z
(Z is the “push-forward” of Z by the diffeomorphism
T%).

This is a straightforward check using the definitions.

3. THE EINSTEIN SYSTEM ON 91U (NO SHIFT AND
NO LAPSE)

In this section we consider the Einstein system in
Gaussian coordinates. Given this coordinate choice,
the system is described by a nondegenerate Lagran-
gian formalism (cf. Refs. 2 and 3) which we now glo-
balize using the language of Sec. 2. We choose as our
configuration space M, the space of all Riemannian
metrics on a fixed compact three-dimensional mani-
fold M. Thus 9N is an open convex cone in S, (M), the
space of two symmetric covariant tensor fields on M.
Therefore for g € M, T,9N = S, (M), and we can write

Tm =m X Sz(M).

We equip M with an indefinite metric G, referred to
as the DeWitt melric, by setting for g € M,

gg: Tgm X Tgm zSz(]l/l) X Sz(M) _)R,
Glh, k) = fM((Trh)(Trk) — By,

where ik = h;; k¥, the dot product of & and %, and He
(=+detg dx1 A dx2 A --- Adxn) is the usual volume
element associated with the metric g. Note that the
space MU has the feature, appropriate for general
relativity, of having metric structures which do not
depend on any particular Riemannian metric for the
underlying manifold M. In other classical field theo-
ries, such as electrodynamics and hydrodynamics, it
is necessary to specify a priori a metric on M. In
general relativity such a specification is, of course,
unnatural as it is precisely the metric structure of
M that is evolving.

Pyoposition 3.1: The Lagrangian L ,(g,h) =
%gg(h, 1) is nondegenerate and the associated Lagran-
gian vector field exists and is given by

Z M X Sz(M) —‘)Sz(M) X szW)
Z(g,k) = (k,k X b — 3(Trk)k + $[(Trk)2 — kk]g)
= (k, S (k) + iXg),
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where (2 X k); = k;, k!, the cross product of £ and &,
S k) = k X k - H(Ttk)k, and % = 3(Trk)2 — k&), the
kmetlc energy scalar.

For each (£, %) € M X S,(M), there exists a unique
smooth curve (g;,%,) € 9 % SZ(M ) with initial condi-

tions (g,, ko) = (£,%) and which satisfies Z, for ¢ in
some interval about 0.

Proof: That § is nondegenerate follows from the
fact that if Qg(k k) = 0 for all & € S,(M), then in par-
ticular, setting & = 3(Trk)g —k, 0= Qg(k, +(Trk)g—k)

fM ke k H, which implies & = 0 as the integrand is

positive.

We first consider Lagrange's equation in the form
(d/dt)D,L o(g,k) @ = D,Lo(g,k)-w, w € S2(M).
Note thatL M X S,(M —>R S0 thatD 1L o(g,k):
S,M) » R andD Lo(g, k) Sz(M) —R. Letg, bea
curve in M that sahsﬁes

g0 =4 and Z—‘?IFO =w € §,(M).
Then from the rule for taking partial derivatives,
d
DL (g,k) w= 7L ol&;, #) 't=0.
Similarly,
d
D,L y(g,k) w = a?LO(g, kt)ltzo
dk,
wherelk, v
By applying this rule, Lagrange's equation becomes

% JU(Trk)g — k- 0 p,,
= [ [~ (Trk)e + kX k + 3Kg]-wp,, (3.1)

=0 =~ (k’ w).

where we have used the fact that the derivative of the
map

pr M > QW), g
[2(M) = smooth volume elements on M] is given by

Du(g): S;M) > A2 (M), g~ Dulg) w = 3(Trwly,

[AMM) = the space of smooth #-forms on M].

In coordinates this result follows from the formula

d

& det(g,; + twy)| o = Tr(w,,) det(g,)

Since w € S,(M) is arbitrary, the integrands of (3.1)
are equal and we get
2 [(Trk)g — k) = [k X & —(Trk)k + 5Kg] 1y, (3.2)
where we are using the superscript™ to mean that
all indices are contravariant, and juxtaposition, like

k~1y,,to mean the tensor product &7y, =21 @y,
(classically, expressions like k™1, are tensor den-

sities, written in coordinates as ki Vdetg).

Equation (3. 2) is Lagrange's equation on T*. To
get Lagrange's equation on TN, we pull (3.2) back
using the fiber derivative of L . This is equivalent
to solving (3. 2) directly for dk/dt. Using the facts
that dg/dt = k, dg1/dt = — k71 (in coordinates this is

dgti/dt =
ordinates this is
(3. 2) becomes

— giagi% ) and du, /dt = 3(Trk), (in co-
(d/dt\detg = 78 (dg,, /dt)Wdetg),
<g—t[(Trk)g - k]‘1> pe + z(Trk)[(Trk)g — k] 1y,

=[(k X & — (Trk)k + %(Kg]'lug.
Eliminating p, gives
4 [(Trk)g — k]T = [k X b — H(Tre)e]:

— 3(Trk)2g™1 + $Xg-1. (3.3)

From (d/dt)}(Trk) = — (Trk)2 + Tr(dk/dt) and taking
the trace in (3. 3), we find

jt (Trk) = — (Trk)2 + 2%

and thus
dk1 1 - - 1 -
o= [k Xk — 3(Trk)k]™ — (Trk)e™! + $Xg 1.

Lowering the indices on 271 by using (dk/dt) -1 =
(dk-1/dt) + 2(k x k)™ (in coordinates this is
guigti(dk,, /dt) = (dkil/dt) + 2 kik¥) gives the result,

dk

F=kXk— HTre)e + $ X g.

Finally we remark that Z is simply algebraic in g and
k and is thus a smooth vector field on TIN and on
T, 0 <k < ©, where IM* is the manifold of C*-
Riemannian metrics on M in the C* topology (uniform
convergence of derivatives up to order »). The mani-
folds TOM*, 0 =< k < ®© are Banach manifolds and
hence the usual Picard method for ordinary differen~
tial equations is sufficient to establish that Z has a
smooth flow on TIM*, 0 < & < «©, defined for a short
time interval and a simple limit argument shows that
k = © is also allowed. Indeed, what one must show is
that the time of existence ¢, does not go to zero as

k —» ©, To show this, suppose we have a solution (g, &)
in TN with initial data (g, %,) which are C#1. Then
we assert the solution is C*#*1 as long as it is defined
in C*, This comes from examining the linear differ-
ential equation for the spatial derivative of (g,k), as
in Refs. 13 and 14, The result then follows, ®

The second order equation Z(g,k) = (¢, Z,(g,k)) =
(,k X B — 3[(Trk)k + 5(Trk)2 — k-k)g) is quadratic
in the second or velocity variable &; that is, for A € R,
Z,(g,Mk) =22Z,(g,k). A second order equation with
this property is called a spray (see Lang!2, p.67).

If Z is the spray of a metric it is called a geodesic
spray and its base integral curves are the geodesics
of the metric. Thus the Z of Proposition 3.1 is the
geodesic spray of the DeWitt metric. However, Pro-
positions 3.3 and 3. 4 below show that the truncated
quantity S,(k) =k X k& — 3(Trk)k also enters the equa-
tions in a fundamental way. We will refer to S (k) as
the DeWitt spray.

We remark that the geodesics of § (that is, the base
integral curves of Z) can in fact be found explicitly
as has been done by Dewitt3 and in a different context
by Eardley, Liang, and Sachs.15 From these explicit
formulas, it is seen that the geodesics exist for short
time only, as they eventually run out of M into S,{M).
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When this happens, the equations break down and be-
come singular since they involve taking the inverse
of g.

Since G is nondegenerate the bundle map 9 TN —»
T*IM defined by 9 (h) & =G, (r,®) is injective. This
map in the class1ca1 case g" TM - T*M corresponds
to lowering of indices by a metric tensor 8- Note,
however, that since the model space S, M) 1s the
space of covariant tensor fields, Q ) eT - T*IM has
contravariant indices.

The terminology weakly nondegenerate comes from
the fact that the map §°, while injective, need not be
an isomorphism, cf. Ref. 11. We should also point out
that in contrast to strong metrics (as in Ref, 12),
weak metrics need not have geodesics. For the
DeWitt metric, however, the existence of geodesics
was checked directly in Proposition 3. 1.

Now G, (k) ki = G,k k) = [ [(Trk)(Trh) — & k],
f (Trk)g ~ k| *h p . If we consider S2(M) ® p,
(= space of two-symmetric contravariant tensor den-
sities) as a subspace of T*‘m the continuous linear
functionals on §,(M) =T, ‘JII in the C=-topology of

uniform convergence of 5er1vat1ves of all orders,

then we can set Sb(k) [((Trk)g — k] 1y, . The space
T M is a space of tensor-valued dJstrlbutmns

We will denote by 7 the momentum canonically con-
jugate to the velocity k, 7 = 9*’ (k) € S2(M) ® p,. In
coordinates, m#/ = [(g“bk )gv — ki )/detg whlch is the
expression for 7 that appears in Ref, 2, Thus 7 can
be interpreted as £ with its indices raised by the
DeWitt metric.

If we cons1der Sz(M) ® p, as the range of Qg rather
than T M, then Sg is onto, and its inverse

(521 = gf: s2u) ® p,— S, ()
is given by

b
9#(ﬂ’ ® pp) = 3(Trn')g — (') [= 3(Trn')g,; — 7],
where 7’ is the tensor part of 7 = 7' ® p,,and (n’ )
means 7’ with its indices lowered [(n'),] = gzkg]l(n )LE

;). The factor ; enters so that Qg [Sg(k)]

S#{ (Trk)g — k]t © ) = H{Tr[(Trk)g — kl}g —
[(Trk)g k] = k, as we expect.

We now proceed to consider the gravitational poten-
tial of DeWitt and to compute its gradient with respect
to the metric §; see the discussion following Proposi-
tion 2. 2, Although the spray Z of § was simply alge-
braic, the gradient of the potential will be a nonlinear
differential operator.

Let
V:M >R, g2 [ Ry,

where R(g) is the scalar curvature of g, and set

Our % and L is minus twice DeWitt's3 so that our L

is of the form kinetic energy minus potential energy
and the kinetic energy enters with the classical fac-
tor 3

Addmg this potential to L in Proposition 3.1 adds a
forcing or gradient term to the equations of motion,
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which we now compute. We include a positive scalar
function N: M — R in the potential for later use (see
Sec. 8).

Proposition 3.2: Let N: M — R be a smooth posi-
tive scalar function on M and let
V:M->R, g2 fMNR(g)pg.
Then
— gradV = — 2N Ric(g) + 3NR(g)g + 2 HessN,

where Ric(g) = Ricci tensor of g, HessN =
double covariant derivative, and where

zlj:

gradv = g¥(@v): M - $,(M)

is computed with respect to the DeWitt metric §.

Proof: We first compute dV(g)=DV(g): S, (M) —R.
Let g, € O be a curve in M with (g,,dg, /dt)| =0 =
(g,w) € M X S,. Then since d/dt by, = zTr( g/d t)ug ,

as in the proof of Proposition 3.1, we get

d
dV(g)'w = ar (gt) =0

v
d
2 [, N Rk,

, fM [dR(gt g, + R(g)% Tr(fi‘) ugj

Il

t=0°
A classical computation gives16

d

Zi R(8)]i=0 = A(Trw) + 86w — Ric(g)w,
where Af = —g¥f; . = Laplace-Beltrami operator on

scalars, and where 66w = w Jl = the double covari-

ant dlvergence Thus

avig) w =2 fMN[A(Trw) + 06w — Ric(g): @
+R(£)z(Trw)]y,.

Since M is compact without boundary, an integration

by parts yields

avi(g) - w =2 j};l{gAN + HessN — N[Ric(g)
—3R(@)gl} wu,

and since w is arbitrary

dv(g) = 2{gAN + HessH — N[Ric(g) — $R(g)g]} .
(3.4)

Using G to pull DV(g) € T, 9M back to TIM, we find

¢*(gaN + HessN) 1y,

= 3gTr(gAN + HessN) — (gAN + HessN)

= $2(3AN — AN) — (gAN + HessN)
= — HessN
and
g#{— N[Ric(g) — $R(2)g]1p,}
= — 3 NgTr[Ric(g) — gR(g)]
+ N[Ric(g) — 28R (g)] = N[Ric(g) — 1gR(g)].

Hence, — gradV(g) = — 2N Ric(g) + $ NgR(g)

+ 2 HessN. B
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Combining Propositions 3.1 and 3.2 (and taking
N = 1) gives

Proposition 3.3: The vector field equations on
TN associated with L are

g
of =k,
?g’: =k X k — L(Trk)t + 3[(Trk)2 — k- k]g — 2Ric(g)
+3R(g)g
= §,{k) — 2Ric(g) + 1%(g,k)g,
where 3¢(g, %) = 3[(Trk)2 —k k] + 2R(g),and S, is
the DeWitt spray.
The basic conservation laws for this system of equa-

tions are

Proposition 3.4: Let (g,,k,) satisfy the equations
of Proposition 3. 3:

‘98
\or =%
ok . 1
[a—- S,k) — 2Ric(g) + 13¢(g, k).

Let 7 = [(Trk)g — k] p,. Then

g b_

a—z(éﬂ') =0
and

aa—[(}c(g,k)ug] + 2667 = 0,
where (67) = — mj; and

where 86m = 7#;,; = the covariant double divergence.

If at £ = 0,67 = 0, then this condition is maintained
for all ¢ for whxch the solution is defined, say [t < e,
and (3 /9¢) [(¥(g, k), ] = 0. If 67 = 0 and GC(g B)=0
Ttlt = 0, then JC(g, }5) = 0 is maintained for all ¢,
t1<e.

Remark: Note that (67)° is conserved whether or
not (67)° = 0 initially, but that Je(g, k)u, is indepen-
dent of time only if 67 = 0. It is conceptually best to
derive these conservation laws from general sym-
metry principles. We do that for the divergence con-
dition in Sec. 6 using the symmetry group D = Diff(M).
In Proposition 8.1 we show that (a/at)[{}c(g,k)pg] =
if the theory is invariant under the relativistic time-
translation group 7 = C=(M; R), which is the case for
the empty space f1eld equatlons Here we showdirect-
ly that (3/8¢) (57)" = 0 and @/28)[3¢(g, k), | + 266m =0
for any solution (g;,%,) of the equations in Propos1t1on
3.4. Of course such a continuity equation is a gene-
ral feature of Lagrangian field theories. Proposition
3.4, in essence, goes back to Arnowitt-Deser-Mis-
ner,2

Proof of Proposition 3.4: First we show
(B/a8)[3(g, khu,] + 2667 = 0: Let X = 3[(Trk)2—k - k]
be the kinetic energy scalar. Then from Proposition
3. 3 and the proofs of Propositions 3.1 and 3.2 we
have

& sen, =3 % (gTrk — 0, + Y- L(gTrk—k)1p)
é[ >< kE — 5(Trk)k + 58X — 2Ric(g)
+3R(g)g)" (gTrk — k) 1y,
+sk-{k X B — (Trk)k + 38X
+ 2[Ric(g) — 3R(g)g ]}t

= 2[Ric(g) - 3R(g)g] &
Also,

j—t[ZR(g)ug] = 2{A(Trk) + 66k —[Ric(g) —3R(2)g] kiu,

so that

d

dt["}c“g + 2R(g)y,] = 2(ATrk + 66k)p,

= — 266{((Trk)g — k), }
= — 26577.

Thus (a/at)JCug + 2867 = 0,

To show that (3/3¢) (67)" = 0 we proceed as follows.
From Eqgs. (3.2) and (3. 4) we have

={k X b — (Trk)k + 3Xg + 2[Ric(g)—3R(g) g}y,
(3.5)

Note that (3.5) is the system of Proposition 3.3 in
Hamiltonian form, namely

a
di

where H(g,m) = 18,(*(m), s*(m) + V(g).

DzL(g,k) =D1L(g1k) ='—D1H(g,ﬂ)’

A computation in coordinates shows that

3 s _ [ fom\ 1 .

570m) = 18{57) + 6((Trkle —k X k — 3Xg),). (3.6)
Substitution of (3.5) into (3. 6) yields our result
@/t (6r)Y =0. m

In the case of electromagnetic fields E,B, X =
[g(E,E) + g(B,B)] and — 67 = x(EA B)pg so that

S G%u,) + 001 = SO, E) +g(B, B)lu,)

—5*(E/\B) = 0.

which is just Poynting's theorem. Here * is the
Hodge star operator which maps k- forms into (n — k)-
forms. In this case we do not have (67) = 0 conser-
ved; cf. Secs. 6, 7, and 8.

From Propositions 3.3 and 3.4 we find that a solu-~
tion (g, ,%,) of

g _
\af =+
(2) - .
(at = S(k) — 2Ric(g) + 33¢(g,k)g,

whose Cauchy data (g, %) at { = 0 satisfies

© {6[(Trk)g —k]=0,
(g, k) =0,
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satisfies (C) for all time ¢ for which the solution
exists, say lt| < €, and hence also satisfies the trun-
cated system of evolution equations

(E)
ar
Solutions to the system (E) however need not be solu-
tions to (Z), nor is it-a priori obvious that solutions
to (E) preserve the conditions (C) on the Cauchy data.
Our next proposmon shows, in fact, that the simpler

system (E) is in fact equivalent to (Z ) under the hypo-
thesis that the Cauchy data satisfies (C).

= §(k) — 2Ric(g).

Proposition 3.5: Let (g,,k,) satisfy the system (E)
with Cauchy data (g, k) that satisfies (C). Then
*(g,,%k) =0 so that (gt,k ) also satisfies (Z).

Proof: 1 (g,,k,) satisfies (E), then a computation
as in Proposition 3.4 shows that

07 = {k x b — (Trk)e + 2[Ric(g) — 3R(2)g]
—R(g)g} . (6.7
Also, a direct verification shows that
a b am
2 om) = [a <at) +0((Trk)e —k X b — zscg)ug]
(3.8)
Combining (3.7) and (3.8) gives
22 om)” + $6[(%ep,)g] = 0. (3.9)

A computation similar to the one in Proposition 3. 4
gives

a(3cp,)

7 (3.10)

+ 266w + 3(Trk)¥eu, = 0.
Consider (3.9) and (3.10) as a first order linear
homogeneous system of partial differential equations
for (Jp,) and (67)". Then if Hyp, = 0 and (67’ =0at
t =0,(3.9) and (3. 10) imply scu =0, (67)> = 0 for all
t for Wthh (g, k,) satisfies (E). “Hence (g,, k,) satis-
fies (Z). m

We remark that the proposition also follows if we
assume that solutions to (E) are unique.l4 Let (g,, %,)
be a solution of (E) with Cauchy data that satisfies
(C), and let (g,, k,) be a solution to (Z) with this same
Cauchy data. Then (g,,%,) is a solution to (E) and by
the uniqueness assumption,(g,,%,) = (gt,k) is also a
solution to (Z). Unfortunately, there is not as yet a
direct existence or uniqueness proof for the system
(E). Using a four-dimensional formulation and a theo-
rem of Leray, Lichnerowiczl7 proves that Cauchy
data

e

of Sobolev class (Hs,Hs1) evolves for short time

into a space—time of class Hs"1, Using an improve-
ment of the Leray theorem by Dionne, Choquet—-Bru-
hat13 shows in fact that the space—time is of class Hs.
In a forthcoming paper we give a simple direct proof

g,
), a‘tw(x’)> 0<yp, v=3,
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that (Hs, Hs'1) Cauchy data evolves for short time
into a space—time of class HS, s > 4 (see Refs. 18 and
19).

Eardley, Liang, and Sachs15 give conditions when the
Ricci term may be neglected, called velocity-domi-
nated solutions. This condition prevails when the
metric is changing very fast as compared with its
curvature, as for example near a singular hypersur-
face. As Ric{g) is the only term involving spatial
derivatives, neglecting Ric(g) reduces the equations
to the geodesic equations on M which can then be
solved explicitly.

As explained in Ref. 1, the evolution equations (E)
plus the initial conditions (C) are equivalent to the
statement that the Lorentz metric g% given in a
neighborhood (— €, €) X M of the initial hypersurface
{0} x M by

git,m) - ((r,v,), (s,w,)) = g,m) @,,w,) —rs,

where (r,v,,), (s,w,) € T, »(RX M)~ R X T,M and
&; is the time-dependent metric with interval of
existence (— ¢, €),is Ricei flat; that is, Einstein's
empty space field equations hold. In coordinates the
formula reads

ghydxodxP = — dt? + g dxtdxi,

where x@ = (¢,x%). As we shall explain in Sec. 7, there
are compelling reasons why we want to restrict our
solutions to satisfy (C) in addition to the fact that
only then do the solutions correspond to Ricci flat
space-times.

Note that we are not postulating that the whole space~
time is of the form R X M; rather it is of the form
{—e€, €) X M only in a tubular neighborhood of the
initial hyperspace. As the metric evolves in time,

the topology of the space~time structure could be-
come more intricate. This global aspect in time is

a difficult problem, closely related to the singularity
problem, about which little is known.17.19.20

The above construction is for a space~time in Gaus-
sian coordinates £4o =— 1, £4; = 0. To get the
most general space~time, we must modify the equa-
tions of evolution to include the shift and lapse func-
tion.

We shall deal with the shift and lapse separately since
their geometrical meanings are quite different; but
they can be handled simultaneously or in succession.
When done together, one uses the semidirect product
group structure on 7 X D,

4, EINSTEIN'S EQUATIONS WITH A SHIFT

Ifgy, is nonzero and we write X =X = — g'igy;
(g# is the inverse of the time-dependent 3- metrlc
& .) so that X is a time-dependent vector field on M,
then the evolution equations corresponding to the
metric

8updxodx® = — (1 — XX;)dt2 — 2Xdtdx? + g;;dxidx
are
)a—t =Fk LXg,
ok -
257 Sg(k) — 2Ric(g) —
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Because of the presence of the Lie derivative in the
first term, 2 is no longer the canonical velocity asso-
ciated with the configuration field g, but is now a
supplementary variable, defined to simplify the evo-
lution equations; that is, the equation for d2/9¢ is
simpler than the equation for the acceleration 02g/9¢2
= ok/ot — (8/0t) (Lyg). We let b = dg/9t denote the
velocity canonically conjugate to the field g.

In Ref. 3 the above equations are considered as Lag-~
range's equations on M. However in this approach
the kinetic energy K(g,k) = 29 (h + Lyg,h + Lyg)
fails to be a quadratic function of the velocity i(al-
though it is a quadratic function of the supplementary
variable k).

In order to have a kinetic energy term which is quad-
ratie, and to incorporate the shift vector field into
the theory in a natural way, we enlarge the configura-
tion space M to D X M. We recall that D = Diff(M)
is the group of all smooth orientation-preserving
diffeomorphisms of M. We can still regard the equa-
tions of Proposition 3.3 on D X IM by just ignoring
the factor ®;namely, for X € TD, (g,k) € TN we
have

/9_11 _ ag -
)at =X, FF=h
2 v oh _ . 1
(}W =X, =7 =5(h) — 2Ric(g) + 3%K(g, k).

These equations come from a degenerate Lagrangian
on DX M, L(X, g,h) = L(g, k). The degeneracy is
clear because the Lagrangian L: T(D X ) — R does
not depend on X; thus, X can be specified arbitrarily.
We give a less trivial extension of the Lagrangian L
to © X M shortly.

At this point it will be necessary to set out a few
properties of the diffeomorphism group D of our
manifold M. We shall need only the most elementary
aspects of this group, which can all be understood
rather easily, as we shall explain. For the more de-
tailed analysis, consult Refs. 7 and 10 and related ref-
erences.

To begin with, D is an infinite-dimensional manifold.
It is not a linear space,as M does not have a linear
structure, but D is locally like C* functions; hence it
is plausible that D has the structure of a manifold
modeled on a Fréchet space of C= (vector) functions.

What we would like to demonstrate is that the tangent
space Tn£D at a point € D is the set of smooth maps
X, :M — TM which cover n; that is, such that the
following diagram commutes:

™
/’
Xn
Tum
%
M— M

b

n

where 7,, denotes the canonical projection of TM to
M. To see that X is of the form described, let

7, € Dbe a curve in D, Mo =7, so that (dnt/dt)l,,_0 rep-
resents a tangent vector in 7, D.8 But for fixed

m € M, o(t) = n,lm) is a curve in M with o(0) = n(m)
and with tangent vector

Tn(Vn)M .

Thus dn,/dt is a map from M to TM covering 7.

d
o’ (0) =7g5 (m)|,=

We refer to X as a vector field which covers 7, so
that TD is the manifold of vector fields covering
diffeomorphisms. In particular, T,D = (M) = {the
vector space of smooth vector f1e1ds on M} = {the
Lie algebra of ZD} There is a natural projection

7: TD — D defined by 7(X,) = X, =1 € D. For

X, € T,D,X on1is an “ordmary” vector field on M,
The assertion dn/dt =X, means that 7, is the flow
of the time-dependent vec&or field X, = X on'l
dn/dton7l. In other words, 7, gives the mtegral of the
ordinary d1fferent1a1 equatlons defined by X, or

)
) _ o).

Now we introduce a new manifold @ of maps of the
form go7n where g € 9N and n € D, This is isomor-
phic to © X M by mapping (1,g)— gen. This map may
be viewed as realizing @ as D X M by right transla-
tion or as @ in body coovdinates. We can also realize
@ in space coordinates using “left translation”:

genr ((n71)*g, 1),

where (n~1)*g represents a new metric obtained by
“actively changing the coordinates” by the diffeo-
morphism 1. If we letX,,,Y, € T M, then

(m)*glm) (X, Y,,) =gontim) (T,n1(X,), T,n2(¥,)).

In a coordinate system, x = (x1, ,x"), this opera-
tion (n71)*g reads as follows: Let x¢ be the ith co-
ordinate of ¥ = 7(x); we suppose for simplicity that
the coordinate chart is so large that n maps it to
itself. Then the new g has coordinates in this system
given by
i
g,;®) = axz (%) g—% (%) g 5, (%)
Our conventions on the placing of the stars agrees
with the convention in Ref. 12 but is the opposite of
that in Ref.8. For example, (70{)*g = £*n*g.

Our procedure of realizing @ in these two ways as
D X M is entirely analogous to what occurs in the
rigid body and hydrodynamics, cf. Ref. 7. This is ex-
plained further in Sec. 5 below.

We refer to @ as the manifold of Riemannian metvics
which cover diffeomorphisms, that is,g, € @ covers
the diffeomorphism 7 if the following diagram com-
mutes:

Pos(M)
g T

M——-M

n

where Pos(M) is the bundle of positive-definite sym-
metric two-covariant tensors (not tensor fields) on M.
In the above realizations of @ as D X N, the space M
plays the role of the “Lie algebra” of @, so that right
pullback to the “Lie algebra” is given by &' & o1,
and left pullback is given by g, = (171)*(g,°11); 8,011
is the vepresentation of g, in body coordmates (1]‘1)*
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(gn n71) is the vepresentation ofg in space coovdi-
nates, and the transition from body to space coordi~
nates is given by gen 1> (n‘l)*(g n~1); that is, this
map represents the transition from the “body repre-
sentation” to the “space representation.” This can
also be interpreted more mundanely as the transition
from a stationary to a moving frame.

To transfer the Lagrangian on 9N to D X M, we con-
sider the map

$: DXM->M, (n,g)~ n*g

(® is the standard left action of the group D on M),

The tangent (or derivative) of & (not the tangent action)
is easily computed. We shall prove that

TE:TDX T TS FMX S,(M),
(X5, (8, )= (07g, n"(h + Ly oq-18)).

Note that X on~1 is an ordinary vector field so that
on.lg is ﬁxe usual Lie derivative. The proof that 7'®

is as given follows from a lemma from geometry.

Lemma 4.1: If Y, is a time-dependent vector field
with flow 7,(n, = idy, = identity), then for g € M

d
ar (ﬂt*g) = nt*(Lytg)-

This is the usual fundamental theorem connecting
flows and Lie derivatives.8

To prove the formula for 7®, we may proceed as
follows: Let 7, be the flow of the vector field X oqm7l,
71, = identity, so that as a curve in D, 7, is tangent to
X o le7, ,and 7,07 is tangent at £ = O to X,. Let g, be
tangent at{ =0 tok and g; =&. Then by defm1t10n
of the tangent8

T(X,,(g,h) = gf <I>(nt°n,g¢)|m-

Using the definition of & and Lemma 4.1, this be-
comes

d d d
%(Tk" 7’) *gt =0 — Lﬁ(ﬂ)*nt*g, t=0 — 77* dat "b*gtg t=0

*ﬂ * dgt
=7 )77‘ LXnon-lgt 77t dt t=0s
which proves our assertion.

Note: If we had used the right action ¥(n,g) =
«& = (n™1)*g, the formula for T¥ would be (N« g,
nxh + anc,n_l(n*g)), which is not as convenient for

later purposes.

By composing L with T®, we can extend our Lagran-

gian L: TO—> R to a degenerate Lagrangian L:

T(D % ‘Jl‘() - R given by L = Lo T®, that is, LKX,,8,h)

=L(n*g,n*(h + Ly on-xg)) = L(g,h + L, On.lg) Where
the last equality follows from the invariance of L by

the pullback action of D (see Sec. 6).

We now explain why the Lagrangian L is quadratic in
the velocities when viewed as a Lagrangian on D X 91,
whereas it is not when viewed as a Lagrangian on
TON. We write out L as

L(X,,8,h) = 38,0k + Ly opaf, b + Ly o 18)—2 [ Ritg.
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To test whether L is quadratic, we must consider the
transformation of the velocities v+ v, A € R. On

D X MM, the velocities are both X, and 1 (rather than
just 2), so that we must con51der the transformation
(X, k)= (X, M), Tt then follows immediately that

f(AX,,,g, M) = A2L(X,, g, h)

[whereas L(X ,E, \R) # )\ZL(X ,&, k)], Working on M
alone, the fact that the shift 1s also a velocity (but not
determmed by evolution equations) is obscured; the
nonquadratic nature of the Lagrangian on M is trying
to tell us that the shift is a velocity variable or equi-
valently that ® should be considered as part of the
configuration space.

We also remark that L is now a degenerate Lagran-
gian on D X M, as the metric term is now degenerate.
Thus we have achieved a quadratic Lagrangian but
only at the expense of giving up a nondegenerate one
and also giving up well-defined equations of motion
(see Sec. 2). Although it might appear that the price
we have had to pay for the exchange is too great, this
is not true. The degeneracy leads to an arbitrariness
in the evolution equations which allows precisely for
an arbitrary specification of a motion of M, that is a
curve 7, € D, or its generator, the shift vector field

X,.
Using L and Proposition 2. 4, the equations of motion
may also be transferred to D X M.

Theorem 4.1: Consider on D X I the degenerate
Lagrangian
L(n,X,g,k) = 3G,(h + Ly ont&ih t Ly o,,-lg)
-2 [ R(®u,.
For any curve 7, with dn,/dt = X,-7,,a possible Lag-

rangian vector field for L is given by the equations
[at a point (Yg,g,h) € T(D x M)]

dg, og

ar =%l ot =k LIxg)

d(Xen) dy, ok _ .
—— =57 » 37 = %) — 2Ric(g) + 1 K(g, k)

— Lyk.

Note: The expression for L may be written (in-
trisically) directly on the manifold @.

As a corollary, we get a simple method for solving
the equations with a general shift X, if the solution
for X = 0 is known.

Corollary 4.1: Let g;, k,be a solution of the Ein-
stein system with N =1, X = 0. Let X, be a given
time-~dependent vector f1e1d with flow nt , No = .
Then the solution of the Einstein system with N =1
and shift X, and the same initial conditions (g, %) is
given by

g = (m1)%g,, = (71)*k, .

To prove the corollary, we need a lemma,
Lemma 4.2: Let X, be a time-dependent vector

field and let the flow of X, be 7,. Then — (7;71)4X, has
flow 771, where (571)+X, = Tn;teX, o7, is the “pullback”
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of vector fields [(n,)« is “push forward” of vector
fields]. Letg € M and k& € S,(M). Then

dt( 1) g ——*th(flt'l) g
and

(nt 1)k = — Ly (n71)"k.

Proof: Let X, be the generator of nt and Y, the

generator of 1 1 By differentiating nen sz, we
find
dn, et
dt(ﬂx% )— nng + Thyo dt =X, + TnoY,onl
= X; + (Tk)*Yt = 0,
where (n)+Y, = Ty, Y, on;l. Thus ¥, = — (1)« X, is

the generator of the flow 51, From Lemma 4.1, for
g € M,ork e Sy(M),

(ng V% = ) Ly g =L, ,v,(71) "8 =—Ly (71)%,
where the second equality follows from the fact that
LYt £ is a tensor and hence commutes with push for-
ward in each of its arguments; in coordinates this is
just covariance with respect to coordinate transfor-
mations,

Note: We have given these details because care
is required when working with time-dependent vector
fields X, . Indeed X, is nof invariant under its own
flow. &

Proof of Corollary 4.1: By the lemma we get

3g, ag -
5}_ ( 1)* L gt k —‘thg“
since 0g,/0f =k, when X, =0,
Similarly,
ok,
3= (n; 1)* 5T Ly k
= (7148, (k) — 20772 Ric(g)) — L B,
= ngt(ke) 2R1c(gt) - thkt,

where the last equality again follows from the fact
that S(-, -) and Rie(-) are tensor operators and hence
commute with push forward (again, in coordinates,
this is just covariance with respect to coordinate
transformations), and we have used the equations for
ok,/0t when X, = 0. &

Corollary 4.1 shows that even though the evolution
equations with a shiff involve extra nonlinear, second
order terms [since Lyk = Ly(h + Lyg) is quadratic
in the velocities], the more general system can be
solved merely by solving an ordinary differential
equation; that is, by finding the flow of X, .

The above geometry also makes it transparent how
the space-time in the presence of a shift is to be
constructed. Namely we have a diffeomorphism

V:RXM-RXM, ¥itm)={, nlm)),

which rotates the space M. It transforms, by Corol-
lary 4.1, the old solution to the new solution. Thus

it transforms the old space~time to the new one. It

is easy to check that the new space—time metric is
the one stated at the beginning of this section. Thus
the space—time with a shift is isometric to the space~-
time without a shift,

We now explain why we have changed the sign of the
shift (see also the next section), If the first evolution
equation, for example, were ag,/ot = kt + Ly &;, then
we would consider g, = gt and &, = 7,4, as ‘the solu-
tion with shift X, if (g,,k,) is the solution with shift
zero. But then

g, 08
=W ar
=k + Ly, x, 8

77 tht = Et + L(U’{l )*Xt(‘fk*gt)

so that now the equations depend on 7, explicitly,
which is not natural.

5. THE EINSTEIN SYSTEM IN SPACE AND BODY
COORDINATES

Interestingly enough, it is possible to interpret the
Einstein system (E) in terms analogous to the con-
cepts of space and body coordinates used to describe
the motion of a rigid body or of a fluid in hydrodyna-
mics. The basis for this interpretation is the two
identifications of @, the manifold of Riemannian met~
rics which cover diffeomorphisms, with D X J1; the
right identification g, = (n,g,°7™1) € D X M leading
to what we loosely call “body coordinates,” and the
left identification g, = (n, (n'l)*(g 1)) e DX M
leading to “space coordmates ” Here I plays the
role of the “Lie algebra” of @ and is therefore analo-
gous to the velocity phase space T,50(3) ~ R3 for the
rigid body or 7; dMﬁD = Xy(M) (the space of all diver~
g;ence free vector fields) for hydrodynamics (see Ref.
7

If we transpose the Lie derivative terms in (E) to the
left-hand side, we see that the operator (3/0¢f) + Ly
enters in the evolutlon equations for both g, and %, .

The derivatives (dg,/df) + Ly g, and (akt/atf + Ly k
are entirely analogous to the material or Eulerxan
derivative (0X,/9¢) + V4 X, which appears in hydro-
dynamics or the time dénvatlve (d(-w)/dt) + w X ([*w)
of the angular momentum L = I of a rigid body as
observed in space coordinates.

The Eulerian derivative is the total time derivative
of the fluid velocity as the fluid moves around in
space. Although it is the time derivative of the velo-
city with respect to an cbserver who is moving with
the fluid, it is expressed in terms of quantities refer-
ring to points fixed in space; that is, it is the total
time derivative of the fluid as seen by an observer
fixed in space. We say that an observer moving with
the fluid is in body coordinaies, or is “on” the fluid,
and an observer fixed in space is in space coordi-
nates, or is “off” the fluid.

We now wish to investigate further this analogy of
general relativity with hydrodynamics in which the
derivatives (3g,/3¢) + Ly &, and (0k,/9t) + Ly &, can

be interpreted as the total derivative of a nme -depen-
dent metric field g, (or of k) as seen by an observer
in space coovdinates. We let the manifold M be the
body. We consider a curve 1, € DM), n, = idy, as
describing a rofation of the body M. Thus we consi-

T Afadle Mhean TPl 16 XYL 4 4 .1 enmn
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der the points of the manifold M to be moving accord-
ing to the rule that a point which at time { = 0 is at

m € M is at 1,(m) after time ¢. We then make the
convention that an observer is in body coordinates if
he is on the manifold, and is in space coovdinates if
he is off the manifold. An observer in body coordi-
nates, as he moves with the manifold, detects no
motion of the manifold.

Now let g, be a time-dependent metric field on M. We
assume that this field is rigidly attached to the body
M as it moves according to the curve 7,, so that we
set g, = §yoay (time-dependence implied). An observer
in body coordinates (who detects no motion of M) then
finds (38,04y/9t) = Kpoay a5 the “velocity” of the met-
ric.

An observer in space coordinates (who is off the
manifold) sees the metric field g4, as it is dragged
past him by the moving manifold. He sees the (time-
dependent) metric field ggpace= (1) gpoay and com-
putes as the “velocity” of £spaces

agspace
a7 =k
where koo = 1) Ryoay = (72) *(08p0ay /21) and X
is the shift vector field which generates the motion
7, of M. Similarly he computes

(5.1)

space Lngpace’

(5.2)

But (5.1) and (5. 2) are just the evolution equations of
(E) with lapse N =1,

6. CONSERVATION OF THE DIVERGENCE CONDI-
TION

In Proposition 3.4 we saw that the divergence condi-
tion is maintained by the Einstein equations. Now we
want to give a more natural geometric proof of this
fact using general symmetry methods.

The idea is extremely simple and goes as follows.
Group D acts on 9N by g b (771)*g as we have seen
before. We assert that this action is a symmetry for
our Lagrangian L(g,k) = 3G,(k, k) — V(g) and that the
corresponding conserved quantities, computed accord-
ing to Proposition 2. 3 give us the desired conserva-
tion law.

Of course by Corollary 4.1 it is enough to show this
for X = 0; we get the corresponding result with a
shift immediately (and for a lapse too using the re-
sults below).

Let us denote for fixed n € D, the map g+ (n71)*g by
6.. First we assert that 9,, is an isometry for the
DeWitt metric. This is almost obvious since G, is
defined intrinsically and everything transforms pro-
perly (see Refs.5 or 10 for an analogous result).
Secondly, 8, leaves invariant the potential. Indeed,
since R is a tensor,

S RO s (-n*, = [ [R(&)en 1) 1) p,
= [ R(&h,

by the change of variables formula [(n'l)*ug is just
the Jacobian of 771 times p].
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= Sg (kspace) - ZRic(gspace) - Lstpace'

We can therefore compute the conserved quantities
using Proposition 2.3. Let {; be a one-parameter
group of diffeomorphisms generated by a vector field
Z on M. Then th is a one-parameter group of
motions of M leaving L fixed and 6, . is generated by

g+ — L,g,a Killing vector field on 3. The corres-
ponding conserved quantity is therefore the real-
valued function on TN given by

(gak)'_) gg(k, _ng)-
Lemma 6.1: fM (Lzg " Bug =2 fM(Z C Ok,

Proof: As was stated in the introduction, and as is
easy to check, we have the formula
Lyg=2;;+ Z;.
From this we see that 6(k-Z) = (6k)*Z — k-VZ =
(6k)'Z — 3k'L 48.

By Stokes theorem we have that fM ok-Z)u, =0, and
so the lemma follows. Recall that 6k = — éjl].. n

Now G (k, L,g) = &(ng-ﬂ’)ug, where 7’ = [(Trk)g —
#]71 is the tensor part of v = 7' ® u,. From
Lemma 6.1 we get the fact that

fM (Z-0m")i, is conserved.

Since Z is arbitrary, (61:')*’ ® p, = (67)° is conser-
ved, where, as above, the symbol ( )’ indicates that the
index is lowered by the time-dependent metric &ijp
that is (67')" = — (7'),j,;. Thus if 6[(Trk)g — k] =0
at £ = 0 then this conditzion is maintained in time,
thereby proving our conservation law.

Note that 67’ must be taken with its index down, that
is,regardedas a one form, in order that its contra-
tion with Z does not involve the metric. Note that we
have shown (Oﬂ)b is conserved even if (611)" is not
zero at { = 0, although this is not true for §((Trk)g
— k) because of the y, term (see also Ref. 19). This
is for the full set of Hamiltonian equations as in
Proposition 3.3. For the truncated system it is
necessary to require that 67 and ¥ both be zero at

¢t = 0 as we saw in Proposition 3. 4.

Geometrically, 5((Trk)g — k) =0 on M means that
k is perpendicular to the orbit of D through g (per-
pendicular in the DeWitt metric). This is exactly a
restatement of the condition §, (&, L ,g) = 0 for all Z.

Thus the conservation of §((Trk)g — k) means that if
(g, k) starts off perpendicular to the orbit through g,
it must evolve in such a manner that it remains per-
pendicular to the orbit. If a shift is present, we mea-
sure perpendicularity by the DeWitt metric on D XM.
In the metric Qg( -, *), this means that g;, rather than
proceeding perpendicular to the orbits, also “slides
along” the orbits; this sliding is determined by the
flow of the shift vector field.

We also remark that
Lyn=Lyn'® ug) =Ly @ p, + ' ® Lyp,
= Lym’' ® p, + (divX)n’ ® U,

where Lyp, = (divX)y,, divX =— 86X =X?%;. Thus
the Lie derivative of a tensor density has the extra
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divergence term (divX)r’ in it, Comparing this with
the evolution equations in Arnowitt, Deser, and
Misner2 reveals the last three terms in the equation
for om/ 8l as Lym.

In summary, we have proven:

Theorem 6.1: Let L be a Lagrangian system
L(g, k) = 3G,(k, R)— V(g) on TN with Lagrangian
vector fleld Z Suppose V is invariant under the
action of D on M. Then if (g, #) is an integral curve
of Z, 3/t {§(Trk)g — klu,f = 0.

Thus if §[(Trk)g — k] = 0 holds at ¢ = 0, it holds for
all time,

In other words, the divergence condition results pre-
cisely from the spatial coordinate invariance of our
Lagrangian. One can similarly work out laws for
other coordinate invariant theories which are built
on tensor or vector bundles other than S,(/1).

1. THE EINSTEIN EQUATIONS WITH A LAPSE

We have just seen that the shift vector field X has a
simple geometric interpretation and the solutions to
the modified Einstein equations are related to those
with zero shift in a very simple and geometrically
transparent way. The lapse function is more interest-
ing and a bit more intricate. In dealing with the lapse
we may assume the shift is zero.

If one has a Lagrangian function on TB, there is a
standard way (see Ref. 9, p. 133) of associating a
homogeneous Lagrangian on T(R X B). Namely set

L:TRXTB~=R XRXTB - R,
L(t,r,v)=ArL(w/A), A =0,

Here A € T,R is now a velocity, and so L is homogene-
ous of first order in the velocities. I is defined just
on the subset where A = 0. This L is degenerate and
its base integral curves are obtained from those of

L by suspending them in R X B with an arbitrary
change of parametrization (reflecting the degeneracy).
Physically, the time has changed roles from being

the evolution parameter of the system to a coordin-
ate in the extended configuration space; one is then
free to choose an arbitrary evolution parameter for
the system.

With this classical example in mind, we thus extend
our Lagrangian L on TN, L(g,h)= 3 Gelh, b) —
f R(g)u, to L: T % Em) - R by setting for

(E,N)e T X T, N>0,
L6 8,6 = J,vefe 2 )i

2 hoh
= () )
Recall 7 is the space of smooth functions £ :M - R,

T = C*(M;R). Since 7 is a linear space, 77 =7 X T
and we denote elements in the tangent space by

(§, N) € T X 7. Note that the constant functions form
a subgroup of 7 naturally isomorphic to R; restricting
to these functions we recover the classical extension
of L. For the relativistic case, the introduction of 7°

instead of R is quite natural as it allows for observers
at different points of M to have different clock rates.

mh—

— 2 NR(g)u,.
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For the classical extension of L to T(R X B), there
is no problem about the existence of its Lagrangian
vector field. One can easily check that the most
general such second order vector field is given by

Z(t A, v) = a(t,)) & A Z(v),

where « is any second order equation on TR (cf.
Ref. 8, p. 136) and Z is the Lagrangian vector field for
L on TB.

Now we come to a somewhat surprising result. This
is that, when we extend L to T(Z X 911) as above, the
Lagrangian vector field need not exist at every point
of T{T X IM). In fact, in the next theorem we shall
see that we are fovcedto restrict to the set on which
JC is identically constant. The result is quite general
for any Lagrangian system, although we deal explicit-
ly with the case at hand. This provides the explana-
tion of why X must be identically constant (generally
taken zero) rather than just the total integrated
energy being conserved; cf. Misner.42

Sachs15 has pointed out that in some dust models, &
can be a nonzero constant. Observe that X is the
total Hamiltonian governing the evolution of all quanti-
ties in the theory. For instance in the presence of an
electromagnetic field, & = — G0 + T® is the energy
governing the evolution of botk the gravitational and
electromagnetic fields. For a physical solution 3 = 0;
the hypothesis (ii) in the theorem below means
physically that our system is relativistic in the sense
that one cannot physically distinguish between the vari-
ous spacelike hypersurfaces. If there are given a
priovi sources or other “painted on” external fields
present, such as the velocity field of a fluid or an
electromagnetic field, one can physically distinguish
the various hypersurfaces and the hypothesis (ii) will
not hold.

Theovem 7.1: (i) If a Lagrangian vector field Z
for L [defined on T(7 X 9N) above] exists, then it must
be a second-order equation provided that it is second
order in either £ or g. (ii) In order that Z should
exist as a second-order equation at ({, N, g, ) and
that N be arbitrarily specifiable, that is, that the
“degenerate direction” is all of 7, it is necessary
that for any curve (£(2), N(2), g(t), k() tangent to Z,
we have (3/21) {3 (g, h/N)u, } = 0, where (g, 2/N)

= 3[(Tr(k/N))? — (k/N): (/N)] + 2R(g).

Proof: (i) In general the relation between Z and
L is the Lagrangian condition

2w, (0)[Z(v), w]=
on TB (see Sec. 2). If we let Z =(Z,, Z,) locally on

TB, this condition reads as follows: For all e, ¢, we
have

dE(v)'w

D,D,L(u,e)-e,ce — D L(u,e)-e; + D,D,L(u,e)-e,-e
=DyD,L(u,e) e,*Z; —D,D,L(u,€) 2" e,
+ DyDyL(u,e)Z ey —DyDyL(u, ) Zy ey
These split up into two conditions:

DyD,L(u,e) Z,"e, = DyDyL{u, e) e, e
and

(7.1)
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D,D,L(u,e)e "¢ — D, L(u,e) e,
=DD,L(u,e)'e,'Z, —DD,L(u, e} Z," e,

—D,D,L(u,e) Zy e, (7.2)

In general, we cannot conclude from (7. 1) that
Z,(u, e) = e because L is degenerate.

Now let us turn to the case at hand. Let us incorpo-
rate y, into £ so we can briefly just write

L, g,N,h) = [N&(g,h/N).

We also suppress the fact that £ depends explicitly
on Dg,D2g, which is irrelevant for the present dis-
cussion.

Using obvious notation, the derivatives of L are easily
worked out to be the following:

D,L(t,g,N,h) (E8)
= derivative of L with respect to (£,£) in direc-
tion (£,3)

= fNag£(g, h/N)&;
D,L(t,8,N,h)- (N, k)

= derivative with respect to the velocity variables
(N, k) in direction (N, %)

- s, n- Wy (g, 4) %+ So2fey)
DD, L, g,N,k)-(E,8) (N, k)
= [ £(g,N>g [, oh£(g,N> g
+ fagahoE(g,%li)'E'ﬁ;

D,D,L(t,g,N,h) ¥, 7))\, k)

== AN
= fNNa,goe(g,N)-N-Fz_ fNathJCg,—]%) ’I‘N—h’i
N k ) i
- fNafﬁ@»‘)'ﬁﬁ Nt fah£<g:zv) iy

Note that in the computation of the second derivative
of L with respect to the velocity variables, two pairs
of terms canceled out., Now let us use this expres-
sion to write out condition (7.1). Let us write
Z,(¢,8,N,h) = (£,8) for convenience. Condition (7.1)
sphts into two conditions, taking respectively

e, = (N,0) and ey = (0, h) We get

0=fﬁéaz~£(g,:,)NN2 fNahZJJ(g, )%Nh
bt [opo(a, )£,

Each of these conditions is equivalent to the single
condition Eh = Ng. Thus if g = N,then 2 = & and
vice versa. Hence (i) follows.

and
0=— [ipe Cg%,) L (7. 1b)

To establish (ii), we write out condition (7. 2) which
now becomes
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D,L@,e) e; =D,D,L{u,e) e ey +D,D,Lu, e)Zy ey,

Again we have a split into two separate conditions
taking, respectively, e, = (V,0) and e, = (0,%). By
letting Z, = (N, k) we get

- h < B\ . h
0= fNag£(g,ﬁ>'h—— fNaga,,J:(g,—>-h-N

~ . W\ h h - B\ B h
NNa2 Yy, L. v Ni e PR
+J Na"‘ﬁ(gv’ > N N2 / L”“"Bég’N) NN
and (

fNag,e(g,ﬁ)k'
= 2,2 Jl(g,N) Bl — fNa,g,e(,f]) E-J—Vh—z
+ fa%&( ,%)E(%)

Condition (7. 2b) is just the condition for Lagrange's
equation for /N = k which we work out in Theorem
8.1 below.

For now we want to focus our attention on the non-
trivial condition (7.2a). Since we are supposed to
have complete degeneracy in 7, N is arbitrary, so
(7. 2a) is equivalent to

- h h h
0= ag&’,(g,]—v)-h — agah,c(g,N)-h-N

(7. 20)

Setting # = 1/N, this becomes

= h . h . .h h . '.h
(7.2'¢c)

Let us take a curve (£(f),g(t), N(t), (t)) tangent to Z
which we suppose exists. Then (7. 2c) just says that

0=2 18,86 k)k — 2(g, )]

or
a

This proves the theorem. &

We shall continue this investigation by showing how
to construct Z in the next section.

8. CONSTRUCTION OF THE EQUATIONS FOR A
GENERAL LAPSE

In view of the results of Sec. 7 and the discussion of
Sec. 1, we introduce the following “constraint” subset
of T(T x 9M):

C CT( xMmM,
e = %(g,N,g,h): N>0and6 [(Trl%)g - %J -0

and C}C<g,l—3)= 0{.
Since ultimately N will be specified in advance, it is
useful to think of € as a subset of T, Unfortunately,

at points g of € which admit a nontrivial isometry
group, € does not seem to be a manifold, This is
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analogous to the nonmanifold structure of super-
space?; see also Sec, 11, However, we shall not re-
quire smoothness of € in what follows:

Theovem 8.1: Let L on T(T X M) be defined as
in Sec.7. Then at points of €, L has a Lagrangian
vector field Z. The most general such second order
vector field is as follows: Specify an arbitrary curve
£(t) € T and set N, = d&(f)/dt, assuming N, > 0. By
writing

= . h
Z(&)Nig:h)=(N’N:gyh)’ kst
then 5
. 8,
g:#:Ntkt,
ok,
k=t = NSg (k) —2N, Ric(g)+ N, 3, k)

+ 2 HessN,.

Moreover, an integral curve of these equations which
begins in € remains in C.

Proof: With Z defined as in the statement of the
theorem, we must verify the Lagrangian condition for
L. Referring to the proof of condition 7.1, this
amounts to showing that (7. 2b) holds and that

(8/2t) [JCCg,k)pg] = 0 for any integral curve of Z
starting in €.

From (7. 2b) it is clear that £ must be the spray of
the DeWitt metric minus the gradient of the potential
ViEe)=2 f NR(g)p,. The equations then follow from
Proposition 3. 2.

To complete the verification of the Lagrange condi-
tion we must show that (8/0)[¥(g, k)u] = 0. To do
this we first observe that the condition 8[(Trk)g — k]
= 0 is maintained in time; this can be proved exactly
as in Sec. 6 by invariance of the Lagrangian under
the action of D. D must now be considered to act on
7 in the natural way, DX T = T;n X £~ £om, We
then prove, under the hypothesis 8] (Trk)g — %] = 0,
that (3/2¢)(%Cu) = 0 by a direct verification, analogous
to the proof of Proposition 3. 4, using the stated equa~
tions defined for Z. W

Note: In general, Z will not exist at points other
than those in €,

The Hessian term is a nonlinear coupling between N
and g. However, we again assert that the solution

for a general N may be obtained from a solution for
N = 1 by integrating a system of ordinary differential
equations. This is explained in Sec. 10.

There is another interesting way to see that one has
(3/2t)(3eu) = 0 for any theory invariant under the
full relativistic time translation group 7. This is an
alternative approach to that used in 7.1 although it
is not detailed enough to allow for the construction
of the equations of motion. It does, however, provide
a group theoretical argument for the relationship
between (2 /3 t)((KZu = 0 and time translation invari-
ance (in the relativistic sense).

Proposition 8.1: Let £ be any Lagrangian density
on I (or any function-space for that matter) with
extension to £ on T(7" x M) as defined in Sec. 7.
Suppose

has a Lagrangian vector field Z on some subspace

€ C T(T xM). Let € be invariant under relativistic
time translations (see below), and let integral curves
of Z map € to €. Then along such integral curves,

(@ /at)(%ep) = 0.

Pyoof: 7 is a vector space and as an additive
groun, acts on ¥ X M and € in a natural way. For
Ep e T wegetamapof T XM~ T XM by (£,8)~
(¢ + £4,8). There is a corresponding one parameter
group &,(£,8) = (¢ + igo, g). This is generated by the
vector field (&,8) = (84, 0).

Now the tangent action of &, leaves L invariant, since
T®,((,N,g,h) = (£ + t£,,N,g,h) and L depends only
on N, not on £. Thus we may apply Proposition 2, 3.
By a straightforward computation, we find that the
fiber derivative is given as follows:

FI(S,N,g, h): T(g,g)(T x m) - R;
- _ ) AR
N, h)>— &N&C(g,-i\-aug-:- fM[ahoe(g,ﬁ)-k]pg.

Thus with V, ) =
tion 2. 3 that

(50, 0) we conclude from proposi-

JI:'I gogcﬂg

is a constant of the motion. Since £, is arbitrary, the
result follows, B

Observe that ¥ is not the energy density for L but
rather is that for L. Since L is homogeneous, its
associated energy function is identically zero; since
wy is degenerate, this does not imply trivial equations
of motion. Finally note that the requirement (67)% = 0
is buried in Proposition 8.1 through the assumptions
that Z exists and integral curves stay in €. Thus
Proposition 8.1 is just illustrative, with the main
results in Theorems 7.1 and 8. 1.

We prefer the proofs we have given for the main-
tenance of the supplementary conditions since they
are natural consequences of the Hamiltonian structure
of the evolution equations and their dynamical sym-
metries. Moreover, in this approach we need not

rely on identities in the corresponding four geometry.

9. RELATIONSHIP WITH THE FOUR GEOMETRY

In this section we establish the equivalence between
the Einstein system (E), with a given lapse N, and
shift X,, for the evolving three geometry g;; and the
Ricci flatness of the Lorentz metric gZ constructed
onI X M [I = (— €,¢)]; the metric gL is obtained by
decreeing that (1/N,X /N) be a unit timelike vector
field on I X M orthogonal to the {¢{} X M hypersur-
faces. To satisfy this condition, we construct g from
&, X,, and N, as follows:

gLt m) (r,0,), (s,,))

= g,(m)- @,, — ¥X,(m),w,, — sX,(m)) — rsNE (M),
In coordinates, this formula reads
ig,pdxedx® = (XX, — N2)(dt)? — 2Xdx'dt + g, ,dxdxd,
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where x* = (t,x?) and X; = g;,X7. We are assuming
that X, has length less than N, which means that our
observer has velocity less than that of light, relative
to a Gaussian reference system.

Theorem 9.1: Let X, and N, be a given lapse and
shift. Then a curve g, € 9N satisfies the system (E)
with lapse and shift N, and X, if and only if the Lorentz
metric g% constructed above is Ricci flat;i.e,R ;= 0.

Obviously this theorem is basic to the whole program
and is in Ref. 1 for N = 1 and X = 0, Here we are
interested in the situation for arbitrary N. One
interesting feature is to see how the Hessian term of
N in the equations of evolution arises. We have seen
in Secs. 3 and 8 how it arose in the Lagrangian
formulation.

The proof of Theorem 9.1 is based on a decomposi-
tion of the Riemann—Christoffel curvature tensor in
terms of quantities associated with an embedded
hypersurface. Four of the equations are the Gauss—
Codazzi equations which relate the curvature tensor
of I X M to the curvature tensor and second funda-
mental form S of the embedded hypersurface M.
The other six equations involve more than the geo-
metry of M and S; they depend also on a family of
embeddings. A convenient reference for this result
is Yano21 Chap. 5; see also, Abraham,22 Sec. 9. For
the purposes of this paper we shall translate the
formulas into coordinate notation. In doing this we
choose a coordinate system in which the f-axis is
normal to the hypersurface M; in other words, we
assume that the unit timelike normal is of the form
Z = (29,0) so that g, = 0.

Thus g, , is of the form —N2di2 + g;.dx%dx7 and

Z = (17N, 0). The case of an arbitrary shift X, may
be dealt with by the methods explained in Secs. 4 and
5.

Lemma 9.1: Let M, be a family of three manifolds
embedded as spacelike hypersurfaces in a Lorentz
manifold V. Let 4Rz, be the curvature tensor on V
and 3R;;,, that on M. Let S;; be the second funda-
mental form (“extrinsic curvature”) of M and Z the
unit normal to M. Then in a coordinate system in
which Z = (1/N, 0), we have the following decomposi-
tion of *Ryps:

. L1 28, 1
(l) 4R0i0j =N E 9% - (S X S)’J —ﬁN“l]
(i) 4Ry, = 3Ry, + SuSpe— SuS;p and

(i) *R;jp0 = Spitj — Sejier

where all covariant derivatives are taken in the
metric on M.

Proof: The decomposition (ii) is the Gauss equa-
tion (Yano,2! p. 94)
4R(X,Y,U,W) = 3R(X,Y, U, W) + [S(X,W)S(Y,U)
— S(Y,W)S(X,U)]
written in coordinates, There is a change of sign
over what is in Yano because g(Z, Z) = — 1 rather

than +1. The decomposition (ii) holds generally for any
hypersurface and is a direct consequence of the rela-
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tionship between the induced connection 3V and the
second fundamental form S,

WY =3V,Y + S(X,Y)Z (9.1)

and the definition of the Riemann- Christoffel curva-~
ture tensor. Similarly (iii) is the Codazzi equation
(Yano,21 p. 95)

R(X,Y,U, Z)=V,S5X,U)— v,5(Y,U).

The decomposition (i) involves the geometry of M, S,
and the family of embeddings (otherwise 35;; /dt has
no meaning). The decomposition (i) may be deduced
(by a long computation) from Abraham?22 Sec. 9, but
we can also give a direct proof as follows. Now we
can write

&,pdx%dx® = — N2dt2 + gijdxidxf

and compute directly from g = 3g%( Eaw T iy
—&,,,)) that

oo = N o/N,

0 2
Li; = 8;.0/2N%,
Too = Ng''N ,

I;p =N /N,
k k

Foj = %gl glj,09

41—}2 = 31-:7"12'

Contracting (9.1) with Z gives
S(X,Y) = — (4vy Y, Z) = (4v, Z, Y).
Thus in coordinates,

Sy=2;=2;; —T§Z,=TIN = g, /2N,

since Z = (— N, 0).
Now by definition

R(Z,X,2,Y) = (V,%,Z,Y) — (W, Z,Y) — (Vg 12, 1),
so that

1
ﬁ; ROlO] = R(Z, X, Z, Y),
where Z = ((1/N)(8/5t),0), X = (0, 8/0x%),
Y = (0, 3/8x7). Now one easily computes the following:

(VXZ)O = sz],
1 1
(92)° == =N, + Tog=0,
k kyrrd ik 0
W Wf = We/N + S'W + g7*N WP,

So we get
V%2, Y) = g,(v,9: 2)*
= gjlsil,O/N + Sllasikgjl

10 ‘
=537 S — (S X 8),;. (9.2)
Similarly,
(%V,Z,Y)= (N,/N)|;=N;,;/N —N N /N2 (9.3)

and finally since [X, Z]*= 0, [X, Z]® = N /N2, we get
(Vix, 212, Y) = NN /N2 (9.4)

Thus adding up (9. 2), (9. 3) and (9. 4) yields (i). &
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In terms of k;; =

1 ak Nlilj
4Ro0; = N? (ZN 57 — 3l X Ry ——x~ ),

4 — 3R
Rim = *Rip + ik il ]k

4Izi.‘iko = Z(kkllj kk]l;

Proof of Theorem 9.1: We prove Theorem 9.1 for
the case of X,=0. Thegeneralcaseis handled using the
methods of Secs 4 and 5. So suppose that gaﬂdxotdxB
= — N2dt2 + g, .dx'dx] is Ricei flat. Using Yano's
conventions, the Ricci tensor is

(1/N)(ag;;/0t) = 25, we have

zk ]l)

4RaB = 4g76 4R7a55 = - 4gyé R)’otéﬁ‘
We have
1
0=4R, = — g8 4R, = = 1R, —EM R

(1ok 1 :
= (—2-1—\775—- 4k X k "‘N(HeSSN)> + {Rlc(g)

— 3k X kb — (Trk)k]},

where we have used decomposition (ii) as well as (i).
This gives the required equation for ak/at.

Slmllarly using decompos1t1on (iii) we have 0=

4g0(6 4R _ 3gkl 4R 0 = z(kl )
= —36(k — (Trk)g) which g1ves the d1vergence
condition.

01

Finally using decomposition (i) again, we have

—_ %
0=1 —4gB AR 550 = — %8 R0y

s 2< 1 3k, (HessN)kl)
4 N N at ’_‘4(k k)kl“—'——‘_N .

I we now substitute the equation for a%/at 1n this
expression, it simplifies down to $N2 X(g, k)
= sN2[X + 2R(g)] so we get the energy condition.

Ryo=

The converse of the theorem is proved by retracing
the steps, ®

10. THE INTRINSIC SHIFT VECTOR FIELD

In this section we study the relationship between
solutions of the Einstein system (E) with the same
Cauchy data but with different prescribed lapse func-
tions. We suppose that we bave a solution (g, &),
[t| < e of (E) for a given lapse N, and shift vector
field X, = 0, and we wish to find the solution (gt, k)
to (E) mth lapse N = 1 and X = 0 such that (g, %
= (g¢s ko). The converse problem of finding (g, k? for
an arbltrary lapse N given the solution (g}, &,) for

= 1 proceeds similarly (see Theorem 10. 3 below).

The above problem is well known to be equivalent to
finding the Gaussian normal coordinates for the
Lorentz metric g, deadxﬂ = — N2di2 + g, dxidxi,
What we wish to do is geometrize this 31tuat1on a bit,

Lemma 10.1: Let N, be an arbitrary lapse func-
tion, let g, € M, [t| < ¢, be a one-parameter curve of
metrics, and let g, m)- [, v, )(s,w,)] = — N2(m)rs
+ gm)* (v, w,,) be the associated Lorentz metric on
I XM, I =(— g, €). Then there exists a unique curve
T, € T ] < ¢’ = e with 7o = 0 such that

51—;= N1 + ligrad7, |, (10.1)

where (grad,)i = gii(d7/dx?) is computed with respect
to the time- dependent metric g,. The function

I >< M - R, 1(t,m)+ 7(m) is the proper time from
(t,m) to {0} % M measured backwards along a unit
timelike geodesic normal to {o} x M,

Proof: Equation (10.1) is just the eikonal equation

—_1-(-6—7> +lgradtll2=—1=gob— o7 —B—T, (10.2)

Nt2 ot axe dx,

which is a single first order nonlinear partial differ-
ential equation. By the Cauchy method of character-
istics, this single equation can be reduced to a system
of eight ordinary differential equations in Hamiltonian
form, namely the geodesic equations of g,

' dxv oH
= = gpvp = =,

s dr v 8P,

? dp, | ogos __oH
ot P =

ar oxH at® _5;#-’

(10.3)

where the Hamiltonian H= % g4, b,

From the initial condition 7{0,m) = 0 and Eq. (10. 2)
itself, we conclude that (d7/df)(0, m) = Ny(m). System
(10. 3) can be integrated for short time 0 < ¢’ = ¢
subject to the initial conditions x+(0,m) = (0, m) and

(0, m) = (No(m), 0) to give (x#(7, m) pp(T m)) Since
tﬁe hypersurface {0} X M is noncharacterlstlc,
x#(7,m) can be inverted for || < €” < €’ = € to give
a function 7(x#) which satisfies 70, m) = 0, Eq. (10. 2),
and 97/3x# = p,. That the geodesics are unit time-
11ke geodesms follows from conservation of 2H

p =— 1 and since dx*/dt0, m) = g4p,(0, m)

W(N0 m), 0) = (— (1/Ny(m), 0), they are normal to

Ofx M. R

The factor v1 + [ grad 7l 2 in the expression for d7/dt
takes into account the fact that, in general, the lapse
depends on space coordinates and therefore “pushes”
up the hypersurface {0} X M unevenly along r = constant
hypersurfaces in7 X M.

There is another way of looking at the lapse function
which has been given by Wheeler!: Namely it is
trivial to check that

Em) = [ Nom)an

is the proper time from {0} X M to {t} X M measured
along the curve ) — (\,m) for m fixed. This differs
from 7,(m) in that 7,m) is the proper time for an
observer following a geodesic; that is, one in free fall.
The curve A+ (A, m) is not a geodesic because of the
spatial dependence of N,

For the rest of this section, we will refer to 7, as
computed from Lemma 10. 1 as the proper time
Sfunction associated with N, and g,. Note that 7, is just
the time part (¢, x’) of the coordmate transformatlon
xo(x#) which transforms g g dxedx® = — N24t?

+ g;.dxidxi to Gaussian coordmates as can be seen
from the eikonal equation for g,

_ Lot e ot
N2 0Ot axk axt
The question naturally arises if we can construct the

rest of the Gaussian coordinate system from 7, alone.
Let ¢,(m) = ¥i({, x7) denote the spatial part of the
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transformation to Gaussian coordinates, so that
(7(m), ¢ (m)) = %+ (x°) is the coordinate transforma-
tion leading to Gaussian coordinates. Since ¢, is a
diffeomorphism, it is the flow of a time-dependent
vector field on M, so that it behaves just like a shift
7, generated by a shift vector field X,. We call ¢, the
intrinsic shift and its generator Y, as the infrinsic
shift vector field of N. Theorem 10. 1 below gives a
way to compute ¢, or ¥, from the proper time func-
tion 7, alone,

In the transformation to Gaussian coordinates, the
hypersurface {t} X M is mapped into the hyper-
surface 7-1(2), so ¢,(m) is the spatial coordinate of
(¢, m) in the Gaussian coordinate system. The intrin-
sic shift thus describes the shifting of the spatial
coordinates in the {t} X M hypersurface due to the
fact that the lapse N, depends on the space variable
so that each point of {{} X M does not have the same

roper time coordinate 7,(m). Thus the hypersurface
£} X M is tilted when it is stretched to fit the 7= con-
stant contours. This tilting causes a shifting of the
spatial coordinates in {t} X M which is described by
the intrinsic shift ¢,.

Theovem 10.1: Let N, and g, be given and let 7, be
determined from Lemma 10. 1. Let Z, be the time-
dependent vector field defined by

N,

Z, = — === gradr,

V1 + [ gradz, 2

and let ¥, ¥y = idy, be its flow. Then the intrinsic
shift ¢, is given by ¢, = y;* and the intrinsic shift
vector field is-

Y, =— WilhZ, = — (¢,)xZ;

Proof: Let ¢, be the space part of the transforma-
tion to the Gaussian coordinate system. Then the
condition on ¢, comes from requiring that the g0¢
components of g remain zero in the Gaussian co-
ordinate system. This condition is

This condition is rewritten as

o1, 0t o0} a7,
—t —1 = N2gki —L = N2T¢,-gradr,
5T Bf {8t %l x* {4 erady
dT7,\2
e
1+ | gradz] 2
so that
7 () (rrrmars)
St —2 V7o -gradr
a "\ )\ T Tgraaniz) ot E

Nt
=t T¢,-grads,

V1 + [grads,[2
= — T(bt ° Zl.
Thus ¢, satisfies
d¢
o8t = = TpZpdil = — (92,
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so that — (¢, Z, is the generator of ¢,. Let ¥,

= idy be the flow of Z,., Then from Lemma 4.2,

— (4042, has the flow ;! so that ¢, = ;2. Thus

— (042, = — W Z, = Y, is the intrinsic shift vector
field associated with N, B

We now consider how solutions (g, %), ¢ < € of the
Einstein system (E) with an arbitrary lapse N, are
related to solutions (g,, %), |!| < €’ = € of (E) with
the same Cauchy data and N = 1, As before, this is
equivalent to finding how the space part of g, zdxcdx8
= — N2di2 + g, dx'dxJ transforms when we transform
to Gaussian coordinates. This is also equivalent to
finding the metric &, induced on the 7= constant
hypersurfaces in the space I X M with Lorentz
metric g4.

The fact that g, is a solution of (E) is again peri-
pheral as we are just computing how the space part
of a Lorentz metric of the form g  dxodx? = — N2dt?
+ g;;dx'dxJ transforms when we transform to Gaus-
sian coordinates.

Theovem 10.2: Let N, and g, be given, |¢|< €
and let 7, be determined from Lemma 10,1, Let

Wy Vo = idy be the flow of Z, = — N(1 + [grad7]|2)-1/2
gradr; let ¢, = ;1 be the intrinsic shift; and let

Y, = — (¢,»2, be the instrinsic shift vector field
associated with N,.

Let g;1 = g%/ be g, in contravariant form and let
gzi(7(m), ¢ ,(m))

=T¢,® T¢ <g‘1 _Zg é)(m)= T¢, ® T

¢ t \5t N, ” N, ¢ 4

gradq,

(g‘l _ gradr,
*  V1+ lgradr,?

V1 + |lgrads| 2) )

- Yt Yt
= T¢t ® T¢t(gt 1)(m)—N_t ® N_t (¢t(m))

Then g, is the metric induced on 7 = constant hyper-
surfaces by the Lorentz metric — N2dt2 + g, .dxidxJ.
As above, denoting the Gaussian coordinates by

((z, x1), ¢i(¢, x)) we have the coordinate expression

3t A
] = e i
7 oxk oxt
a1 oaT\1 37 3T
X{ghkl — |1 + gab—— __> kmgln 2 27 (t x)
(g ( d dxe ox?® £7¢ oxm ax") ’

Remark: Note that in order that g1 remain posi-
tive definite,

dr-X_ \2
g{X, X) > ( A Tenal®)

This holds at { = 0 and so will hold for some /-inter-
val around 0.

Proof: Let — N2dt2 + g, dx‘dx] be the Lorentz
metric assocjated with g, and N, Transforming this
metric to Gaussian coordinates gives the transforma-
tion law for the 3-metric g¥ as
Fi(alt, 28, Tilt, 78) = T (1, k) E (¢, kg (1, 1)

oxm ox”
1 3%t (

3%
_ X P £
= 37 t,x)at (¢, x%).
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By using
Loxi _ N_o%i 07
N3l T37d 5 e
from the proof of Theorem 10.1,
we have
Fii(r(t, x*), i, x*))
axm axm 1 + lgradr)2 axk

w97 {t, x%)
ax!

grad7,(m) )

which is written as
g Urm), o m)) = To, © T,
rad7, (m)
X@pm)~ il

As a corollary we get an expression for the solution
to the Einstein system (E) for N = 1, given a solution
{g,,%) for arbitrary lapse N,

Corollary 10.1: Let (g, k) be a solution to the
Einstein system (E) with N, given and X, = 0. Let
T, Ty = 0 be determined from Lemma 10 1,let
Z, =—N,/(1 + llgrad!2)-1/2 grad 7, and let ¢, be the
intrinsic shift. Let g/ 5! be g, in contravariant indices;
let

Y = (¢,¢;)*Zt, Y
FiUrlm), ¢, m)) = To,® Te, (gt -——‘ ® >( )

and let 2, = 3g,/37. Then (g, %
with N, = "1 and

%,) is a solution to (E)

(E(): Eo) = (Eo,ko).

Proof: From the theorem, g, is the metric induced
on 7 = constant hypersurfaces and so is the solution
of (E) in Gaussian coordinates; that is, with N, = 1.

Since 75 = 0, §g = g¢. From the chain rule,
AY

g1 oT
o1 9df

_@ﬂl
T ot (=0

Since Yy = 0 and ¢y = id,,, one sees from the above
expression for -1 that

g-l ' ag—l
t=0  8f le=0"
Thus
L.,
ar ot - t
or Noko = Nykg, so that kg = ko. B

In case the lapse N, = N(¢) does not depend on the
space coordinate, then N, = dr,/dt and the relation of
solutions (g,,%) to Emstem s equations with N(z),

X =0,and N, =1, X = 0 is particularly simple. In

fact, if we define 7{f) = fo N (A)dh then the solutions
to the Einstein equations with N = 1, X = 0 are just
reparameterizations by 7(f) of the solutlons (g4, k)
of the Einstein system with N, = N(t), X = 0. We
check this formally as follows:

V1 +{gradr, 12 V1 + lgrads,(m)I2 )’

Proposition 10.1: Let N, = N(t) be a function of ¢
alone and let (g, &) € M X S,(M) be a solution of the
Eingtein system with N, = N (2 f), X=0. Let

7{t) = f(t) NQ)dx and let 771{f) be its inverse. Then
g, =ge7"Xt) and k, = koT1(t)

is the solution to (E) with N, = 1 and
(8o ko) = (g5 Rg)-

Remark: gy =g and & ¢, = k.

Proof: That (g,,%,) =
7-1{0) = 0. Also,

) _dg,
dt dt

(&, k) follows from

1) 4T (1) = (Nk)(f'l(t))( ~(7- 1(t))) N

= N(T- 1)k = k(t
-~ (- HOM(rH0) s = D)
dk{t -
R _ dh g dTi =, »whlmn

-2 Ric[g(’f'l(l))] = Sgt@(l)) — 2 Ric(z(#))
so that (g, %) is a solution to (E) with N,=1. B

Now we briefly consider the converse program;

namely, given the solution (g, %) to (E) with lapse
N, = 1,and given an arbitrary lapse N, find the solu-

tion (gt, k) to (E) with lapse N, and such that (%0 ko)

= (2o Ro)-

We claim that by a simple trick this program can be
carried out by solving for the Gaussian coordinates
of a suitably altered space-time.

Theovem 10.3: Let (g,k) € MXS,{M), || <e be
a solution of the Einstein system (E} with lapse N, = 1,
X, = 0. Let N, be a given lapse function. Construct a
Lorentz metric on I X M by setting

— di2 -
s = dt +§y_ dxidxi
N2 N2

and let %1 (x9), 0, x’) = 0, x%(0, x7) = x¢ be the trans-
formation of I 4 to Gaussian coordinates. In these
new coordinates, the metric g, deadx6 = — dit?
+ g;,dx'dxJ is transformed to g " pd%ed%® = — N2dI2 +
g Adxidzi, so that (g, (l/N)(agt/at)), It} <e =k,

=g, solves (E) with lapse N, and (Z,,k,) = (go, ko).

Proof: The conditions that the new coordinates
x#(x°) transform I s to Gaussian coordinates are

S— 1= _N2(5-5> + N2gis 8L 3E

axt axi (10. 4)
501 8%! al awi )
0= N2 + N2ghl—_.
2 ot ¢ g axk axl

For any g;;, we can solve these partial differential
equatlons or %*(x%} with initial conditions 7#(0, x%)
= (0, x*) by Lemma 10.1 and Theorem 10. 1,

The conditions that a coordinate transformation
Fu{xe) transform g 6dxcee;ixﬂ = — di2 + & dxidxi to
Z,5dXodXb = — N2di? + g, dx'dxi are
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“aw0\2 0 0

S (2207 i 20930

N2 t axz axi’
oo B0, B0 10.5)

- T3t ot Dk axz'

But Egs. (10. 5) are equivalent to (10.4), ®

We remark that by our above work, we know that when
transforming /s to Gaussian coordinates, the func-
tions 7,(m) = t{¢,x%) and ¢ ,(m) = X2, x7) satisfy

d¢t _ 1 2
~ = /J_VE + llgrad 72,

(10.6)

d¢ d
Cotegt = — 0. (- E2AT),

so that if ¥, is the flow of — grad7/(d7/dt), ¢, =y
Equations (10. 6) are just (10. 4) rewritten.

Also, as in Theorem 10. 2 the equations for g, are
given by

Finlm), o)) = To, @ To (gt — 52 o 134T,

which follows from the coordinate expression

grad7r _ grad T)

i

Fiilx Mx)) = ai
gl Mxe) P
and (10. 4).

()22 eh(x) — S 6IGE )

11. THE RELATIONSHIP OF THE MANIFOLD d
TO SUPERSPACE AND SOME REMARKS ON
SUPERPHASE SPACE

Let

P:DXM-M, (n,8) = ml)'g
be the left action of D on M. Then superspace $(M),
or the space of all geometries of M, is defined as the
orbit space M /D of this action. This is explained
briefly as follows: For fixed g € I, let

6, = {(n)"gln € Dy M

be the orbit of D through g. Then 0, is the set of all
metrics isometric to g. Since $(M) is the set of all
orbits in I,

s(M) = m/D =10, g eM},

8(M) is the space of all isometry classes of Rieman-
nian metrics or geometries on M.

The importance of $(M) is that it is the natural con-
figuration space for a dynamical theory of general
relativity. The reason for this is that isometric
Riemannian metrics are physically indistinguishable;
thus a physical state determines only an isometry
class of Riemannian metrics. In the language of the
classical physicist, the metric representing the
physical state is determined only up to a coordinate
transformation.

Unfortunately $(M) is not a differentiable manifold.
This is because the isometry group ,={n € D|(n-1)*
g = g} of a metric g € M is dlfferent for different

£. As the isometry group Z, is the isotropy group of
the action ¢ at g, the resulfmg orbit space is not a
manifold; in other words, the symmetric geometries
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do not have neighborhoods homeomorphic to neigh-
borhoods of geometries which have no symmetries
whatsoever. $(M) can, however, be stratified into
differentiable manifolds, each strata §;, (M) being all
those geometries whose isometry groups [, deter-

mine equivalent group actions on M. This, however
is a rather long story; for details see Ref. 5.

Since $(M) is not a manifold, it is awkward to use

$(M) as the configuration space for a dynamical
system. This difficulty becomes apparent as soon

as we try to construct the tangent bundle T(9N/D),

the velocity phase space. It is probably possible to
give meaning to T(IM /D) by taking limits of tangent
spaces and using the notion of tangent cones. However,
the singularities of $(M) would then be severely com-~
pounded.

A way to short circuit this approach is to define as
the superphase space not 7(91U/D),but rather

M x SzW) m X€ SZW)
) 5D
the orbit space of the action

(, 8, ) »((1)g,

Note that 79 /D is not equivalent to T(9MN/D).

TIM /D is perhaps a more likely candidate for super-
phase space as the tensor fields (g, k) € TN are
subjected only to the same active coordinate trans-
formation; that is, the pair (g, k) must transform to-
gether. From Corollary 4.1 we see that this is
appropriate from the dynamical point of view.

Unfortunately, T0/D = (M X S,(M))/D suffers from
all of the pathologies that S(M) does, as well as the
added difficulties related to the structure of S, (M)/D.
Note for example that D leaves invariant the 0-tensor
field in S, (M), so that the isotropy subgroup of 0 need
not even be finite-dimensional (as it is for ®,%’).
Thus the construction of equations of motion on

TIM /D directly does not seem feasible at this time.
Nevertheless, the dynamics on 79I, followed by a
projection onto T'91/D does recapture all the essen-
tial elements that a dynamical system on T9/D
would have to possess. In fact, 79 /D inherits a
continuous flow from the flow on T9X. Thus we have
a CO or topological dynamical system.

(T9)/D =

& DX T = TN, m=1)"k).

To incorporate the shift vector field into the dynamics
we have in the course of this paper chosen T(D x 9N)
as the velocity phase space. The degeneracy in our
Lagrangian allows one to specify arbitrarily a curve
Ny Mo = idy,, in the factor D or equivalently a shift
vector field X,. The solution (g, k,) of (E) with shift
vector field X is then related to a reference solution
@, &) of (E) with shift X, = 0by (g, k)= {(;; Vg,
(n)* k,) Thus (g, ) can be thought of as (&, &)
sliding along the orbits 0, , ) = (V) *g, M H*R) |7
€ D} CIN X S,(M). The factor D then keeps track of
Eh_e 21;1ount of sliding relative to the reference curve
8 Be)-

Note that the curve (g, &,) and (g, #,) are projected
onto the same curve in 79M /D as we have divided out
by D, so that solutions to (E) which differ only by a
shift vector field map to the same curve in 79/,
Thus if we could construct a dynamical system on
TM /D directly, it would be independent of the shift.
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We also remark that if we define (74,g;) € DX M
to be equivalent (= ~) to (n5,8,) € D X M if (n71)*gy
= (3)*g,, then D X M/~ = M/D. Similarly, if on
T(D X M) we define (an,gl,kl) ~ (Ynl,gz,kz) if

(1) *g1, M7) k1) = (131) g4, M31)*ky), then T(D X
M)/~ = TW/D. Thus we recapture the space of
physically indistinguishable states TN /D by defining
a suitable equivalence relation on 7@ ~ T(D X ). Of
course this equivalence relation is natural from the
point of view of the dynamical development of the
states.

We now wish to incorporate the lapse function into
the picture. For nonrelativistic classical field
theories, there is a canonical parameter of evolu-
tion, namely the time /. For covariant relativistic
field theories in general, and for general relativity
in particular, the proper time 7 plays the role of a
canonical parameter of evolution, In order to main-
tain covariance, however, one must allow for an
arbitrary reparameterization of this evolution para-
meter. This reparameterization may also depend
on the space points of the field. It is because of this
possible space dependence of the change of para-
meter that Wheeler refers to time as a many
fingered entity; this is associated with the Dirac—-
Tomonaga—Schwinger many time formalism for
quantum field theory.

Another well-known implication of covariance is that
a covariant field theory when expressed in a dynami-
cal formulation must be degenerate. This situa-

tion comes about because the resulting dynamics
must be able to be summed up as a tensor field on

a four dimensional manifold V. Each slicing of V,
therefore, gives rise to a different dynamical system
all of which are equivalent in the sense that they lead
to the same tensor field on V. As the dynamical
formalism must take into account this arbitrary
slicing, it must be degenerate. In this paper the
introduction of 7 accounts for this arbitrary slicing
of a space—time; D takes into account the possible
coordinates in each slice. Let V =171 X M, and let

{t} X M be the ¢ = constant hypersurfaces. Let 7, be
acurve in 7 and let = I X M = R, (t,m) ~ 1,(m). Then
7-1(¢) are the 7 = constant hypersurfaces. Thus each
curve 7, € 7 maps ¢ = constant to 7= constant hyper-
surfaces and thus can be considered as an arbitrary
slicing of V with respect to some reference slicing
which represents Vas/ X M,

Let (2, %) be a solution of (E) with X =0, N = 1,

We consider the curve 7, € T defined by 7,(m) =1 as
a reference curve. We construct the space-time

Lo pdxdxB = — dt? + 8;;dx*dxi on I X M. Now suppose
that we are given an arbitrary curve 7,€ 7, 79 = 0.
Alternately, by Lemma 10.1 we may suppose we are
givensome lapse function N, and thenfind 7, associated
with it and g,. The evolution for this new lapse or
new 7, is determined by finding the metric on the

7 = constant hypersurfaces. Of course, these evolu-
tions are equivalent in that they determine isometric
Lorentz metrics or, in other words, are summed up
by the same space—time. Nevertheless, given a curve
(8, k) € T, each curve 7, determines a dynamical
curve (g, k) € TON. Thus we map curves in 7 to
curves in T /D = T(D X 9MN)/~. The image in $(M)
X S4(M}/®D of all curves in 7, projected onto S(M), is
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just the sheaf in superspace which summarizes the
space—time. This idea is described by DeWitt23
without the use of the space 7.

12, CONCLUSIONS AND FURTHER WORK

In this paper we have attempted to clarify the Hamil-
tonian structure of the Einstein equations and to
achieve a clear understanding of the geometrical
roles played by the lapse and shift functions, We feel
that we have gained a more natural form for the
phase space of general relativity by introducing the
groups D and 7. For example, by enlarging the con-
figuration space from M to 7 X D X I, the lapse and
shift functions may be incorporated into the dynamics
as dynamical velocities. Moreover, we showed
explicitly how one can obtain solutions for any lapse
or shift from the trivial ones N = 1, X = 0 by inte-
grating a system of ordinary differential equations.
In connection with the lapse, we introduced a new
object, the intrinsic shift, which takes into account
the spatial shifting of the {{} X M hypersurfaces when
mapped into 7 = constant hypersurfaces.

We feel that the introduction of the groups Dand 7
helps to properly understand the basic conserva-
tion laws for &7 and ¥ as a consequence of dynamical
symmetries. On the other hand, we are forced to
accept a degenerate Lagrangian system. This
degeneracy is present and is perfectly natural when
one considers any covariant field theory from a
dynamical point of view.

Some work which remains to be done is to explore
whether or not the procedure presented here helps
to clarify any of the difficult quantization problems.
However, preliminary indications are that quantiza-
tion problems run much deeper. For example, in the
usual quantum theory of fields one deals with equa-
tions of the form O¢ + F(¢) = 0,for definiteness say
O¢ + 13 = m2d. As a classical partial differential
equation, this equation is semilinear, as the highest
order derivatives occur linearly, the nonlinearity
occurring only in the ¢3 term. As is well known,

a rigorous and complete quantization of such equa-
tions is very difficult and, in fact, has not yet been
achieved for four-dimensional space-times. In
relativity, the basic structure of the evolution equa-
tions is quite different. Let us, for example, neglect
the fact that the equations for a space—time are a
system of partial differential equations. Then, roughly
speaking, the “scalar analog” of the evolution equa-
tions is the quasilinear equation ¢O¢ + ligrade¢li2 =
gradp = goB(dd/3x2), Now ¢ itself is involved in the
coefficients of the operator ¢'. Also, the equation
involves nonlinear derivative coupling terms. Very
little is known about the quantization of such an equa-
tion. Moreover, the equations for relativity are much
more involved, as they involve a system of quasilinear
equations, the components of which are very badly
mixed in the highest order (unless one chooses the
harmonic coordinate condition) and first-order
derivative terms. Thus, a complete quantum theory of
general relativity seems quite far away.3.24

In aforthcoming paper!8;14 we shall be focussing our
attention on problems of existence and uniqueness of
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solutions using the theory of quasilinear fi»sf-order
symmetric hyperbolic systems, rather than the usual
methods using the considerably more complicated
theory of second-order strictly hyperbolic systems.
Our existence proof will follow simply and directly
from such a first-order treatment. Moreover, we
will be able to give a more intrinsic treatment by

making use of a global version of the symmetric
hyperbolic theory.
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The normalizable states that minimize the uncertainty product of the oscillator phase operators are determined

and some of their physical properties are discussed. A physical classification of these states has been made and
the class of “analogous” states to the well-known coherent states is physically defined.

1. INTRODUCTION

Quantum mechanically it is convenient to define the
phase ¢ of the harmonic oscillator indirectly by de-
fining the “cosine” and “sine” operators C and S,
which correspond to cos¢ and sin¢ in the classical
limit. The operators C and S found do not commute,
i.e., the cos¢ and sin¢g cannot be measured simul-
taneously. It is therefore interesting to find the nor-
malizable states, which minimize the uncertainty
product (AC)2- (AS)2of C and S.

It was proved in Ref.1 and was noted in further re-
search?s3 on the quantum mechanical oscillator
phase problem that there exist no normalizable states
that minimize the uncertainty product (AC)2- (AS)2.
This result is correct in the sense that for these
states the inequality (AC)2(AS)2 = ${(1 — p)/2)2 be-
comes an equality and, moreover, (1 — p)2 becomes

a greatest lower bound.

We have shown in a previous work,4 using methods
of the spectral theory of bounded operators, that nor-
malizable states minimizing the uncertainty product
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(AC)2-(AS)2 do exist in the sense that the above in-
equality becomes an equality.

In the present work we determine these states and
find some of their physical properties. Moreover,
we classify the normalizable minimal uncertainty
states and characterize, both mathematically and
physically, the states that have properties analogous
to those of the well known coherent states.

In Sec. 2 we present some general properties of the
normalizable minimal uncertainty states and the
“minimal uncertainty sequences” of states for arbit-
rary noncompatible observables A and B. We note
that the knowledge of the point spectrum and the con-
tinuous spectrum of the non-self-adjoint operator

A + iyB is sufficient for the determination of the ex-
pectation values of A and B in the corresponding
states. The determination is exact in the case of the
point spectrum and approximate in the case of the
continuous spectrum. In addition we characterize
mathematically the states that have properties ana-
logous to those of the coherent states.
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solutions using the theory of quasilinear fi»sf-order
symmetric hyperbolic systems, rather than the usual
methods using the considerably more complicated
theory of second-order strictly hyperbolic systems.
Our existence proof will follow simply and directly
from such a first-order treatment. Moreover, we
will be able to give a more intrinsic treatment by

making use of a global version of the symmetric
hyperbolic theory.
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The normalizable states that minimize the uncertainty product of the oscillator phase operators are determined

and some of their physical properties are discussed. A physical classification of these states has been made and
the class of “analogous” states to the well-known coherent states is physically defined.

1. INTRODUCTION

Quantum mechanically it is convenient to define the
phase ¢ of the harmonic oscillator indirectly by de-
fining the “cosine” and “sine” operators C and S,
which correspond to cos¢ and sin¢ in the classical
limit. The operators C and S found do not commute,
i.e., the cos¢ and sin¢g cannot be measured simul-
taneously. It is therefore interesting to find the nor-
malizable states, which minimize the uncertainty
product (AC)2- (AS)2of C and S.

It was proved in Ref.1 and was noted in further re-
search?s3 on the quantum mechanical oscillator
phase problem that there exist no normalizable states
that minimize the uncertainty product (AC)2- (AS)2.
This result is correct in the sense that for these
states the inequality (AC)2(AS)2 = ${(1 — p)/2)2 be-
comes an equality and, moreover, (1 — p)2 becomes

a greatest lower bound.

We have shown in a previous work,4 using methods
of the spectral theory of bounded operators, that nor-
malizable states minimizing the uncertainty product
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(AC)2-(AS)2 do exist in the sense that the above in-
equality becomes an equality.

In the present work we determine these states and
find some of their physical properties. Moreover,
we classify the normalizable minimal uncertainty
states and characterize, both mathematically and
physically, the states that have properties analogous
to those of the well known coherent states.

In Sec. 2 we present some general properties of the
normalizable minimal uncertainty states and the
“minimal uncertainty sequences” of states for arbit-
rary noncompatible observables A and B. We note
that the knowledge of the point spectrum and the con-
tinuous spectrum of the non-self-adjoint operator

A + iyB is sufficient for the determination of the ex-
pectation values of A and B in the corresponding
states. The determination is exact in the case of the
point spectrum and approximate in the case of the
continuous spectrum. In addition we characterize
mathematically the states that have properties ana-
logous to those of the coherent states.
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In Sec. 3 we determine all the normalizable minimal
uncertainty states for the phase operators C and S:
in which both C and S have vanishing expectation
values, These states are called Y ;- states.

In Sec.4 we characterize and determine the class of
Y -states, which are the complement to the Y- states
with respect to all normalizable minimal uncertainty
states. Among the Y- states are the f,- states, which

are eigenstates of the adjoint of the unilateral shift

operator. In these states the operators C and S have
the same mean square deviation. This property is a
characteristic property of the f,-states. All the phy-

sical quantities in the Y- and Y -states are determined

and give reasonable physical results.

In Sec. 5, we find the physical quantities of C and S in
the “minimal uncertainty sequences.” It is found that
in these sequences of states the expectation values of
C and S tend to the classical quantities cos¢ and sin¢
and the mean square deviations tend to zero.

Finally in Appendixes A and B we clarify the method
of obtaining normalizable minimal uncertainty states
and “minimal uncertainty sequences.”

2. GENERAL PROPERTIES OF MINIMAL UNCER-
TAINTY STATES

Normalizable States

The normalizable minimal uncertainty states for the
noncompatible observables A and B, satisfying the com~
mutation relation AB — BA = iC, are obtained as
eigenstates of the non-self-adjoint operator

L =A +iyB, 2.1)

where y is a nonvanishing free real parameter (see
Appendix A).

From (2.1), setting M = A — iB, M* = A + iB, we
obtain

L ={{1++4)/2)T,

where
T =vM + M* {2.2)
d
y=1—9)/1+y). (2.3)

Since y = 0, we have from (2. 3)
y =1,
Thus, the minimal uncertainty states for A and B are

obtained as eigenstates of the operator (2.2).

In Ref.4 we have studied the spectrum of T for a
large class of bounded non- self-adjoint operators M.
Here we note that the knowledge of the spectrum of
T has the following physical importance,

The expectation values of A and B can be determined
only from the eigenvalues of 7.

We start from the eigenvalue equation

rM + M*)f =2, Al =1 (2.4)
and write A in the form:
A=rpet® tpuei® u>=0, 0< ¢ < 2m, (2.5)

Thus, every normalizable minimal uncertainty state f
is characterized from three real parametersv,, ¢.
Write f(r, 1, ¢) and denote by ¥, the class of states
flr,0,0) and by Y the states f{r,p, ¢) with u = 0. The
class Y, consists from states, which are eigenstates
of T with eigenvalue zero. These states are charac-
terized from one real parameter. The states Y are
obtained from (2.4) with A = 0. Obviously, in the fol-
lowing we consider the case in which the sets Y, and
Y are not empty.

From the eigenvalue equation (2. 4), using the iden-
tities:
r —

W = wunn =5~ "5t e,

v +1

A
B) = Bf.f) = 5; — L5 M1,
or directly from the equation

A) +iyB) =[(1 + 9)/2]n,

(2.8)

combining real and imaginary parts, we derive easily
the following statements:

(1) The states Y,, are the only normalizable minimal
uncertainty states in which both A and B have vanish-
ing expectation values.

(2) The expectation values of A and B in the states
fr,u, ¢) € Y are obtained from the following formu-
las:

Q) = Rer)/(1 +7),

(B) = @)/t — 7), @0
or writing A in the form {2.5),

(A) = pcoso, (2.8)

(B) = — psing. (2.9)

Normalizable Sequences of States

In Ref.4 we have introduced the concept of “minimal
uncertainty sequences.” They are normalizable se-
quences of states, which tend to minimize the uncer-
tainty product (AA)- (AB) of A and B. As we note in
Appendix B, the minimal uncertainty sequences of
states correspond to the continuous spectrum of the
operator (2, 2),1i.e., for every X in the continuous spec-
trum of T' there exists a minimal uncertainty se-
quence of states{f, |7, satisfying the relation

U@ — )£l =0 ag n—o, (2.10)

From the identities

we obtain the relations

A+R — 1

(B):(Bﬁ&,];):w_r+l

) ——
where ’ 2

R(,) = (T — AL, f,).

(MJ; ’J; )’

(2.12)
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The relations (2.11) are analogous to the relations
(2. 6). Thus, we obtain

Re[r +R(f,)] Rer ReR(},)

“ = 1+7r it 1+7v (2.13)
Im{x + R(f,)] Imx ImR(f)

B =g =TT 17

From (2.12) we have |R(f,)| < (T —AI)f,| and due
to (2.10) lim|R (f,)| = 0, asn — «, i.e., the expecta-
tion values (2. 13) tend to the expectation values
(2.7).

States Mathematically Analogous to the Coherent
States

Consider the position and momentum operators @ and
P, satisfying the commutation relation QP — PQ =il

For the operators @ and P the operator (2. 2) has the
form

T =7va* + a, (2.14)
where a* = 2°V/2(Q — iP) anda = 2°V2(Q + iP) are
the creation and annihilation operators.

As is well known, the coherent states form a class of
minimal uncertainty states for @ and P. They are the
eigenstates of the annihilation operator a.

We observe that the coherent states are eigenstates
of the operator (2. 14) for » = 0. Therefore, generally,
the states which are mathematically analogous to the
coherent states are the eigenstates of the operator

(2. 2) for * = 0. They belong to the ¥ class.

It is easy to see that the so-defined, mathematically
analogous states to the coherent states have the fol-
lowing physical property.

Both observables A and B have in these states the
same mean square deviation.

3. THE Y ,-STATES OF THE OSCILLATOR PHASE
OPERATORS

The oscillator phase operators C and S, studied in
Refs.1 and 3 are the following5:

C=W*+Vv)2 S=(W*-V)/2, (3.1)
where V is the unilateral shift operator on an abstract
Hilbert space with the orthonormal basis {¢,}?, i.e.,

V is defined as follows:

Ven =€,,q, B = 1929"' .

The operator (2.2) in case of the operators (3.1) has
the form

T, =7V + V*, (3.2)

It is well known# that for |7|< 1 every point in the
interior of the ellipse

z=7ret®+ e 0< ¢ < 2m,

is an eigenvalue of the operator (3. 2).

We note that the eigenstates of the operator (3. 2) for
¥ negative are related with the eigenstates for » posi-
tive by a unitary transformation and a rotation, i.e.,
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T, = ei"/2WT ,
where the unitary operator W is defined as follows:

Wen = g im/2 e, n=1,2.

In fact we have

T, =—7V+V¥=rel™V + V* = ei"/2W*@¢V + VV)W.
For this reason, in the following we consider always
the operator (3. 2) with » positive.

For v = 0 we obtain from (3. 2) the well known eigen-
states of the operator V*, These states, as we have
noted in Sec. 2, are the analogous to the coherent
states and play an important role in many problems
of the operator theory.5,7

The eigenstates of V* belong to the class ¥ and we
shall study their physical properties in Sec.4. Only
the state e,é {ground state) belongs to the class Y,,
because V*e, = 0,

Determination of the Y,-States

We determine the eigenstates of the operator (3. 2)

for » = 0, corresponding to the eigenvalue zero. Let

¥, be such a state, i.e,,
oV +V*¥y, =0, (3.3)

Setting @, ey) = a, we obtain from (3. 3)

(laby,ez):(w", 34)20--_—__-0

and (Ez’w 63) =—7a, ("P'r! 65) = Tzd: LR (d/r’ e2n-1) =

[a- (7)), i.e,¥, = a2 (—7)*"1e,, ;. The nor-
malization of these states gives a = (1 — 72)¥/2, Thus

¥, =(1- 72)1/2~§ () le,, .. (3.4)
7 =1
From (3. 4) we have
cy, = (1 —72)122-(1 -7, (ey — re, + 12e5 — - ++),
(3.5)
Sd/f: (1 _1’2)12/2'(1 + T) -(_ ez + 7'24 _7286 4 -).
(3.6)

Thus
(€Y, ¥,) = (S, ¥,) = 0.

From (3. 5) and (3. 6) we obtain the mean deviations of
C and S in the states (3. 4)

aC = eyl =1 —n)/2, (3.7

AS = (1 +7)/2. (3.8)
Thus

(AC)-(AS) = (1 — ¥2)/4. (3.9)

Observe that AC + AS =1,

The operators C and S satisfy the commutation rela-
tion
CS—SC =i{I—P)/2, (3.10)

where / — P is a projection, which projects on the sub-
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space, spanned by the element {¢,},1i.e.,] — P acts as
follows:

(I—PW, = W,, e;)e; = (1 —r2)1/2¢,,
Thus
U—P/2) =3 {1- Py, ¢,) = 0 —r2)/2.

From (3.9) and (3. 11) we have

(3.11)

(AC) (aS) = I —P)/2).
This is the minimal uncertainty relation for the com-
mutation relation (3.10),
The Number Operator N Acting on the Set Y,

The states (3. 4) belong to the definition domain of the
oscillator number operator N. In fact we have

o0
Ny, (2= (1 —72) 2y r2n72.(2n — 2)2 < o,
n=1
(Note that the oscillator number operator in the

abstract form is defined5 as follows: Ne, = (n — l)en,
n = ]_’ 2, e, )

The expectation values of N in the states (3.4) are
determined as follows:

W+ D=+ B, )= - rz)-?"_il ¥2 G120 — 1)

—(1_ 2.9 7 :1+1'2
(1 7’)cl1f<1—r2> 1—22’

i.e.,
W =W+1DH—1=2r2/(1 —2), (3.12)

From (3. 4) we have

(N + D2) = [V + Dy, |12
=( —72)(1 +32r2 + 5294+ ...)

o2 2 (5]

=222
(1 —r2)2

Thus from the relation (AN + I))2 = (N + I)2) —
(N + D2, we obtain

AN+ D =27/(1 — »2)
and, since A(N + I) = AN, we have

AN =2r/(1 — »2), (3.13)

From (3.7),(3.8),and (3.13) it follows that

(ANXAC) =7/(1 +7)
(aN)(AS) = 7/(1 — 7).

4. Y-STATES FOR THE OPERATORS C AND S
Determination

We shall use the method of the representation of the
Hardy-Lebesgue space by means of the operator V*,
in order to determine the eigenvalues A = 0. Accord-
ing to this method® A is an eigenvalue of the opera-
tor (3.2) if and only if the equation

r2f (2) + (1/2)[f(2) — F(0)] = M(2) (4.1)

has a solution f(z) = 23,2, ¢,2""! analytic in the unit
disk and satisfying the condition 2572, I¢, |2 < .

From (4.1) we have

fz) = f(0)(rz2 — xz + 1), (4.2)

i.e., A is an eigenvalue if and only if the roots of the
equation

rz2 —xz+1=0 (4.3)

lie outside the unit disk, or, equivalently, the roots of
the equation

W2 —XW+r=0 (W=1/z2) (4.4)

lie inside the unit disk [note® that, for the operator

(3.2),1(0) = 0].

A way to see that the roots of Eq. (4. 4) lie inside the

unit disk for every A in the interior of the ellipse

z = r expli¢) + exp(— i), i.e.,for every A of the form
A=rpet? +pei? 0s u<1, 0<s¢ <21 (4.5)

is the following:

We set W = p exp(s8) and obtain from (4.4} X =
p exp(is) + (v/p) exp(— i¥) and

A2 = p2 + 1/p2 + 27 cos2s. (4.6)
From (4. 6) it follows that
IN[2 — 27 cos2s > 0 (4.7)
and
p2 = 312 — 27 cos2s
+ (I1]2 — 27 cos2s)2 — 42)1/2],  (4.8)

Due to (4. 7) we observe from (4. 8) that the bigger
root of Eq. (4. 4) decreases with [x],and {r[,as fol-
lows from (4. 5),decreases with y. For u =1 we
obtain from (4. 4) w, = r exp(— ip), w, = exp(ip),i.e.,
since v < 1 the bigger root has the value |w,| = 1,

For p <1 we must have |w, | < {w,| <1,i.e.,Eq.
(4. 4) has roots inside the unit disk. Therefore, Eq.
(4.3) has roots outside the unit disk for every x of
the form (4. 5).

Now let py, py(lpy | > 1, [py| > 1) be the roots of
Eq.(4.3). Then from (4.2) we obtain

1

£le) =£(0)-
(2) =£(0) (1= 2/p )0 —2/ny)

=f(0)

7@ — p)(z — py)

0 1 )
=f(0)20 — 21 zml
n=1 p{l‘l n=1 pg-l
© 1 1 1 1
:f(o)E( + — et )zn—l
A = > py~t
© 1
=f0)2; — (1 +pr + pir?

n=1 pF~
+ . +p%(ﬂ“1)frn—1).zn-1
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1 pZym -1 © /1 1
— 03— -1 ot fead (_— —_—)e,,, (4.9)
n=1pf-1 p%}’“l »=1\pg  PY

_Q‘)]‘_-i(_l-_ i) zn'l'
Pr—1na\eg g

The corresponding to f(z) eigenelement of the opera-
tor (3.2) is6

[1+72—7r2(lp, |12 + [p,|2)][1 + 72— r2(pp,

where A is the normalization constant and 5, and 7,
are the complex conjugates of p; and p,.

With some manipulations we find

A2 =

We summarize here our results:
For every A in the interior of the ellipse

z=vre®+et? r<1 0< ¢ <2,

i.e.,for every A in the form

A =rpet® +puet?, 0<su<l,

we have two roots of the Eq. (4. 3) p,(, yt, ¢) and
Py, i, ¢) such that |p;| > 1 and Ip,| > 1 and a nor-
malizable eigenstate of the operator (3.2) f(r, u, ¢)
given from (4.9). This eigenstate belongs for p = 0
to the class Y.

Note that for every eigenvalue we have only one
eigenstate. This statement can be proved® easily, for
tridiagonal operators, as is the case of the operator
(3.2).

The class of Y-states is very large in the sense that
only for v = 0 we obtain from (4. 2} the well-known®
J.-states, which form a complete system of states
and which we shall study below.

Jf.~States

We call the normalized eigenstates of the operator
V* f-states. These are the following:

fi=01- \z|2)1/2-izn-1e,,, lzl <1. (4.11)
n=1

The expectation values of C and S in the states (4.11)
can be found from the general formulas (2. 8) and
(2.9). We get

(C) = p cosp, (8)=—psing, p=lzl. (4.12)

The mean deviations of C and S are obtained as
follows:

From the eigenvalue equation V*f, = 2f/Z we have

(V+V*)f, =2f, +V},
or
2-Cf, — zf,= VJ,

and, since V is an isometry,
l2ct, — 2, Il = lvell = 1. (4.13)
From (4.13) we obtain
4llcr, iz — 4lz| {C) cosp + |z]2 =1
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7'2(1 - 72)' (Ipl |2 + Ipzlz - ﬁlpz - ﬁzpl)

Pl (4.10)
|
and due to (4.12)

lerliz = @ — [z12)/4 +(C)2. (4.14)
From (4. 14) it follows that

(aC)2 = (1 — 1z12)/4, (4.15)
In the same way we find

(aS)2 = (1 — |z12)/a, (4.16) .
From (4.15) and (4. 16) we have

(AC)+(AS) = (1 — 1212)/4. (4.17)
Observe that ( — P)f, = (1 — |z|2)1/2-¢, and

(- P)/2) = 1— |z]2)/2. (4.18)

From (4.17) and (4. 18) we obtain the minimum un-
certainty relation for the operators C and S.

The Action of the Number Operator N on the
States f,

From (4.11) we have
) = 0N, f,)
= (1— |z]2)]z[2(1 + 2]2|2 + 3[z]4+---)

P
- (= eyl (L
|22 |24
1= 22 1= e )
. |z |2
i.e., (N) = m (4.19)

And
INf, 12 = (1 — |212)-|2]2-(0 + 22(z |2 + 32|z]4+ -..),

Setting [z |2 = w, we obtain

d d w ww + 1)
NEN2 = (1 — w)w -2 o & - .
Iy, |l (1—w)w [w y <1 >] = a 2

Thus
(N2) = |z[2(1 + |2]2)/(1 — |z]2)2.

From (4.19) and (4. 20) it follows that

(4. 20)

AN = |z|/(1 - |z[2).
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It is interesting to note here that

{€C2+8)-{C)2+(8)2—>1 aslz|—~1

and that |z| — 1 means, due to (4.19), that (N) - ©,

Moreover, since in case p = 1 the spectrum of the
operator (3.2) is purely continuous,4 we observe
from (4. 12) that there exist no normalizable states,
minimizing the uncertainty product (AC)-(AS) and
satisfying the relation

€2 +(5)2 =1.

For minimal uncertainty sequences for which we
have p = 1 the expectation values of C and S are not
given exactly from the formulas (4.12).

From (4.15) and (4.16) we observe that both C and S
in the f, - states have the same mean deviation. As we
shall see later, this is a characteristic property of
the f,- states.

Moreover, it is interesting to note that the f, - states
are obtained from one monoparametric class of in-
vertible operators acting on the ground state e, i.e.,
we can easily verify that

I—zV)f, =(1— |z|®)V2e,
or
fi= a1- |z|2)1/2.(1_ ZV)“lel,

z:lz] <1,

where V is the unilateral shift operator.
Physical Quantities in Y- states

Let the eigenvalue equation

OV + V*)f =N, A =rpe’? + pei?,

0<u<l 0< ¢ < 21, (4.21)

The expectation values of C and S in the state f are
given from the general formulas (2. 8) and (2. 9).

From (4.21) we have

9Cf — af =(1 — 7)Vf (4.22)

and from (4. 22), using the same technique as before,
we obtain

(€2 =[(1 —7)2—Ix|2]/4 + n2(1 +7) cos2¢  (4.28)
and
(82)=[(1 +7)2 — |x[2)/4 + p2(1 — 7) sin2¢, (4.24)
where

12 = p2(1 +72) + 2u2r cos2¢. (4. 25)

From (4. 23) and (4. 24) we obtain the mean square
deviations of C and S:

(AC)2 =[(1 —7)2 — [x]2)/4 + u2r cos2¢,

(AS)2 = [(1 +7)2 — [r]2]/4 — uZr sin29¢,
or because of the relation (4. 25)

(AC)2 = (1 —7)2(1 — p2)/4, (4.26)

(AS)2 = [(1 +7)2:(1 — p2)]/4. (4.27)

Also we obtain

(C2 +82) =[p2(1 —72) +1 +72]/2—>1 forp—1.
From (4. 26) and (4. 27) it follows
(88)2 — (AC)2 =7(1 — p?), (4.28)

i.e., for » = 0 only in the limit p = 1,C and S have
the same mean square deviations.

The Action of the Number Operator on the States
for,u, ¢) withr = 0,pu =0

We setf; = A 2, (1/p))"6,, 1, =A%, (1/p)e,.
Then, from (4. 9) f('r u,d)) =f; —/fo Startmg from
the identities

_ n <1
;Z}l(n 1)x (1—x)2’ | | ,
Sy X2 X)) x| <1,
2 b= =S

we determine the quantities

INf,f1) = A2:(1py12 — 1)72, (4.29)
Nfy, f,) = A2:(Ipy 12 — 1)°2 (4. 30)
(Nfy,fa) = A2 (oo — 1)72 (4.31)
(Nfy,f1) = A2 (pyp, —1)72, (4.32)
N2, 1) =A%[(Ipy1 2 + 1)/ (1 py12 = 1)3],  (4.33)
(N%,,f,) = A2[(lpy 12 + 1)/(Ipy 12— 1)3],  (4.34)
N2y, fo) = A2 [(Pypy + 1)/(Pgpy — 1)3], (4. 35)
Ny, 1) = A2 [(pyPy + 1)/ (pgp; — 1)3]. (4.36)

From (4. 29), (4.30), (4. 31), and (4. 32) we determine
(Nf,f) and from (4. 33), (4. 34), (4. 35), and (4. 36) we
determine (N2f,f).

A Characteristic Property of the States f,

From (4.9) we have all the normalizable minimal un-
certainty states for the operators C and S. For A =
0,i.e., for p; = i#~1/2 and p, = —ir~1/2 we obtain the
Y,-states and for A = 0 and 7 = 0 the class of f,-
states. If we require that in the minimal uncertainty
states both C and S must have the same mean devia-~
tion, then we obtain from (4.28) » = 0,i.e., we obtain
the states f,. Thus the equality of the mean square
deviations is a characteristic property of the states
/.- The so important for its applications’ class of
f,-states can be also physically defined as follows:
f,-states are the minimal uncertainty states for the
oscillator phase operators C and S, in which both C
and S have the same mean square deviation.

5. MINIMAL UNCERTAINTY SEQUENCES FOR
THE OPERATORS C AND S

A sequence {f,}, » =1,2,---,is called a minimal
uncertainty sequence if it corresponds to the con-
tinuous spectrum of the operator (3. 2),i.e.,f, has the
property im{ (T — AI)f, |l = 0 as» — .
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In general, we have found in Sec. 2 that the expectation
values of A and B tend to the values p cos¢ and

— i sin¢, where u is given from the relation A =

vy exp(i¢) + p exp(— i¢) and A belongs to the con-
tinuous spectrum of the operator (2. 2).

The continuous spectrum of the operator (3.2) is
obtained for p = 1. Thus, the expectation values of

C and S in the sequence of states f, tend to the values
cos® and — sin¢, 0 < ¢ < 27,

Setting @V + V* — AD)f, = ¢,, where lim|l¢, | = 0 as
n — ®© we can determine as in Sec. 4 the mean square
deviation of C and S in the sequence of states f,.
These mean deviations tend to the values given from
(4. 26) and (4.27) asn — 0, But in this case, we have
p = 1 and therefore, as follows from (4, 26) and (4. 27),
we have

(AC)2 >0, (AS)2—-0,
Thus, the minimal uncertainty sequences for the
operator (3. 2) have the property that the expectation
values of C and S tend to the limit cos¢ and — sing
and the mean square deviations tend to zero.

From a general theorem, proved in Ref. 4, it follows
that the operators (3. 2) and V have the same mini-
mal uncertainty sequences. Setting f, = A2 %1%
we can determine the coefficients g, and the constant
A in order that f, be a minimal uncertainty sequence
for the operator V, corresponding to the continuous

spectrum of V A = exp(— i¢), 0 < ¢ < 2r, We find
a, = exp(ik¢) and A = n" /2, Thus
n
f,=nV2Y cikse, (5.1)

k=1

It is not difficult to find the physical quantities in the
sequence of states (5.1). A straightforward calcula-
tion gives
(€), = (1 — 1/n)-coso,
(S), =— (1 — 1/n)-sing,
(C2), = cos2¢ + (3 — 8 cos2¢)/4n,
(S2), = sin2¢ + (3 — 8 sin2¢)/4n,

(AC)2 = (1/n):[¢ — (cos2¢)/n],

(AS)2 = (1/n)-[§ — (sin2¢)/n],
W), =t — 1)/2,

N2), = (m— 1)(2n — 1)/6,

(AN)2 = (n2 — 1)/12,

APPENDIX A: NORMALIZABLE MINIMAL UN-
CERTAINTY STATES

Let A, B be two self-adjoint operators, satisfying the
commutation relation AB — BA = iC. Let D{4), D(B),
and D(C) be the definition domains of 4, B an>d C, res-
pectively. Assume that A,/ # 0, Byf =

(Cf,f) # 0, where A, = A —(A), B, = B <¢3> Then
for every real vy we have8

(Ag = iyBy) 112 = A flI2 + 2| By flI2 F (C). (A1)
For y = 3{C)*|By/[12 we have from (A1)
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| (c)2

4lA,f1 2+ | ByfII2 —

By)f 2 = s

”( ZHBOfHZ ) NENGE “2)

From (A2) we obtain the uncertainty relation for A
and B

4|4, r1l2-Byf12 — (C)2 = 0.

Assume that there exists an element f such that the
equality in the relation (A3) holds. Then

)

(A3)

Ao S + i—_ZHBOfIIZ B,f =
* © ©
Ay - (<A> AP <B>)f,

i.e., (since Af = (A)) there exists a real y= 0 such
that / is an eigenelement of the operator

L =A+iyB. (A4)
If, conversely, there exists a real y = 0 such that f be
an eigenelement of the operator (A4) with the eigen-
value K, then we must have K = (4) + iy(B), i.e.,

Aof + iyByf = 0.

From (A5) we obtain y = |A,flI/IB,f!l in case y > 0
andy =— [AyfII/ByfIl in case y < 0. From the iden-
tity (A1) it follows always that

2[4, 7+ 1Buf IF = <O,

i.e., the equality in the relation (A3) holds. Thus we
conclude that the state f minimize the relation (A3) if
and only if there exists a real v # 0 such thatf is an
eigenelement of the operator (A4).

(A5)

Remark: Since y can take positive and negative
values, the residual spectrum of the operator L for
y > 0 is the point spectrum of L for y < 0. This is
the role of the residual spectrum of the operator L.
The continuous spectrum of L plays also an impor-
tant role, which we shall examine below.

APPENDIX B: MINIMAL UNCERTAINTY SEQUEN-
CES OF STATES

Let K belongs to the continuous spectrum of the
operator (A4) for a realy = 0. This means that
there exists a normalizable sequence f such that

(x4 + i-yB)f" =g,

as n — o,

(B1)
d
lim|lg, || =0 (B2)

We call the sequence f, minimal uncertainty sequence
for the operator L.

From (B1) we obtain

ALY, + B, = ¢, ®3)
where

£, =& — (%) s

A(()”)zA— (Afn’f;l)7 (B4)

BY = B — (B,.1,).
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From (B4) we have

¢, <2lgl—0 as n-ow (B5) .

and from (B3)
y = I&, — AFRN/ 1B, .

[We consider the case y > 0, i.e., due to (A1),{C), =
cr,.5,) > 0.]

If 1im||Ag‘)fn | =0or limIIBg‘)f,, | =0asn— o, we say
that the sequence f, tends to minimize the relation
(A3) in the sense that both {C), and 2[A%, |I-1B¥, |
tend to zero.

If liml|A® || = 0 and limHBg')fn | =0asn ~ @, we may
assume that from a large = on ||¢, | < 4% II.

Thus we can set

LA I — N, I < g, — AL < Ng, I+ 1AZY, 1. (B6)

On the other hand, equality (A1) gives

_ AW

g, 12 = 1487 12 + llg, — A%, 12 — '-'g—"—m!@"—” (Ch»
185, |

), >0. (BN

Due to (B6) we obtain from (B7T)

lg, 12 = 1AZ7 12 + (1A% 1 — llg, 1)

e, Il + 1a&%)
TTIBEE,

or

2148, I-1BE, | — (C), < lig, |12

2042% 11871 + (),
A ’

i.e., due to (Bb) the sequence f, tends to minimize the
relation (A3).
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Erratum: Weight Lowering Operators and the Multiplicity-
Free Isoscalar Factors for the Group R;
[J. Math. Phys. 12, 594 (1971))
S.J. AliSauskas and A, P.Jucys

Instilule of Physics and Mathewmalics of lhe Academy of Sciences of Lithuanian SSR, Vilnius, USSR
(Received 24 November 1971)

The last entry on the right of Eq. (30b) should be

— K, — 2. In the next-to-last line of the right-hand
side of Eq. (38), the subscript 1 was omitted. The
symbol (K0) on the left in Eq.(43) should be (¢ 0).
The left-hand side of Eq. (44) should read

(KAY (& 0) O
4 4§ 00]
The factor (27, — pB)! in the numerator on the right of

Eq.(27) was omitted. Instead of the last y in the de-
nominator of the sum in Eq. (A. 2) should be z.

Erratum: Solution of the Schrodinger Equation in the
Hardy-Lebesgue Space
[J. Math. Phys. 12,1961 (1971)}
E.K.Ifantis

Nuclear Reseavch Centev “Democvitos, Aghia Pavaskevi Attikis, Athens, Greece
(Received 22 November 1971)

Proposition 4 is not correct. The error is in the
counter example. The eigenelement x = )32 %€,
was normalized by taking x, = 1 while in this case

%o = 0. In Proposition 2 the operator ¢(V) is bounded

1 E.K.Ifantis, J. Math, Phys. 11, 3138 (1970).

because ¢(2)-f(z) € ¥H,(D) for every f(z) € IH,(D).
The statement ¢(2):f(z) € 3,(D) follows easily from
the integral condition that characterizes the elements
of the space 3,(D)(See Ref.1).
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